RFR: 8176501: Method Shape.getBounds2D() incorrectly includes Bezier control points in bounding box [v7]

Laurent Bourgès lbourges at openjdk.java.net
Tue Nov 16 11:00:37 UTC 2021


On Tue, 16 Nov 2021 05:22:13 GMT, Jeremy <duke at openjdk.java.net> wrote:

>> src/java.desktop/share/classes/java/awt/geom/Path2D.java line 2124:
>> 
>>> 2122:         // a box that is slightly too small. But the contract of this method
>>> 2123:         // says we should err on the side of being too large.
>>> 2124:         // So to address this: we take the difference between the control
>> 
>> This is my alternative proposal to use the polynomial error as base error (cubic case is more tricky as solveQuadratic is problematic too for huge curves):
>> 
>>         // So to address this: we take using the upper limit of numerical error
>>         // caused by the polynomial evaluation (horner scheme).
>> 
>>         for (; !pi.isDone(); pi.next()) {
>>             final int type = pi.currentSegment(coords);
>>             switch (type) {
>>                 case PathIterator.SEG_MOVETO:
>>                     if (!started) {
>>                         started = true;
>>                         leftX = rightX = coords[0];
>>                         topY = bottomY = coords[1];
>>                     } else {
>>                         if (coords[0] < leftX) {
>>                             leftX = coords[0];
>>                         }
>>                         if (coords[0] > rightX) {
>>                             rightX = coords[0];
>>                         }
>>                         if (coords[1] < topY) {
>>                             topY = coords[1];
>>                         }
>>                         if (coords[1] > bottomY) {
>>                             bottomY = coords[1];
>>                         }
>>                     }
>>                     lastX = coords[0];
>>                     lastY = coords[1];
>>                     break;
>>                 case PathIterator.SEG_LINETO:
>>                     if (coords[0] < leftX) {
>>                         leftX = coords[0];
>>                     }
>>                     if (coords[0] > rightX) {
>>                         rightX = coords[0];
>>                     }
>>                     if (coords[1] < topY) {
>>                         topY = coords[1];
>>                     }
>>                     if (coords[1] > bottomY) {
>>                         bottomY = coords[1];
>>                     }
>>                     lastX = coords[0];
>>                     lastY = coords[1];
>>                     break;
>>                 case PathIterator.SEG_QUADTO:
>>                     if (coords[2] < leftX) {
>>                         leftX = coords[2];
>>                     }
>>                     if (coords[2] > rightX) {
>>                         rightX = coords[2];
>>                     }
>>                     if (coords[3] < topY) {
>>                         topY = coords[3];
>>                     }
>>                     if (coords[3] > bottomY) {
>>                         bottomY = coords[3];
>>                     }
>> 
>>                     if (coords[0] < leftX || coords[0] > rightX) {
>>                         final double dx21 = (coords[0] - lastX);
>>                         coeff[2] = (coords[2] - coords[0]) - dx21;  // A = P3 - P0 - 2 P2
>>                         coeff[1] = 2.0 * dx21;                      // B = 2 (P2 - P1)
>>                         coeff[0] = lastX;                           // C = P1
>> 
>>                         deriv_coeff[0] = coeff[1];
>>                         deriv_coeff[1] = 2.0 * coeff[2];
>> 
>>                         double t = -deriv_coeff[0] / deriv_coeff[1];
>>                         if (t > 0.0 && t < 1.0) {
>>                             double x = coeff[0] + t * (coeff[1] + t * coeff[2]);
>> 
>>                             // error condition = sum ( abs (coeff) ):
>>                             final double margin = Math.ulp( Math.abs(coeff[0])
>>                                     + Math.abs(coeff[1]) + Math.abs(coeff[2]));
>> 
>>                             if (x - margin < leftX) {
>>                                 leftX = x - margin;
>>                             }
>>                             if (x + margin > rightX) {
>>                                 rightX = x + margin;
>>                             }
>>                         }
>>                     }
>>                     if (coords[1] < topY || coords[1] > bottomY) {
>>                         final double dy21 = (coords[1] - lastY);
>>                         coeff[2] = (coords[3] - coords[1]) - dy21;
>>                         coeff[1] = 2.0 * dy21;
>>                         coeff[0] = lastY;
>> 
>>                         deriv_coeff[0] = coeff[1];
>>                         deriv_coeff[1] = 2.0 * coeff[2];
>> 
>>                         double t = -deriv_coeff[0] / deriv_coeff[1];
>>                         if (t > 0.0 && t < 1.0) {
>>                             double y = coeff[0] + t * (coeff[1] + t * coeff[2]);
>>                             
>>                             // error condition = sum ( abs (coeff) ):
>>                             final double margin = Math.ulp( Math.abs(coeff[0])
>>                                     + Math.abs(coeff[1]) + Math.abs(coeff[2]));
>>                             
>>                             if (y - margin < topY) {
>>                                 topY = y - margin;
>>                             }
>>                             if (y + margin > bottomY) {
>>                                 bottomY = y + margin;
>>                             }
>>                         }
>>                     }
>>                     lastX = coords[2];
>>                     lastY = coords[3];
>>                     break;
>>                 case PathIterator.SEG_CUBICTO:
>>                     if (coords[4] < leftX) {
>>                         leftX = coords[4];
>>                     }
>>                     if (coords[4] > rightX) {
>>                         rightX = coords[4];
>>                     }
>>                     if (coords[5] < topY) {
>>                         topY = coords[5];
>>                     }
>>                     if (coords[5] > bottomY) {
>>                         bottomY = coords[5];
>>                     }
>> 
>>                     if (coords[0] < leftX || coords[0] > rightX || coords[2] < leftX || coords[2] > rightX) {
>>                         final double dx32 = 3.0 * (coords[2] - coords[0]);
>>                         final double dx21 = 3.0 * (coords[0] - lastX);
>>                         coeff[3] = (coords[4] - lastX) - dx32;  // A = P3 - P0 - 3 (P2 - P1) = (P3 - P0) + 3 (P1 - P2)
>>                         coeff[2] = (dx32 - dx21);               // B = 3 (P2 - P1) - 3(P1 - P0) = 3 (P2 + P0) - 6 P1
>>                         coeff[1] = dx21;                        // C = 3 (P1 - P0)
>>                         coeff[0] = lastX;                       // D = P0
>> 
>>                         deriv_coeff[0] = coeff[1];
>>                         deriv_coeff[1] = 2.0 * coeff[2];
>>                         deriv_coeff[2] = 3.0 * coeff[3];
>> 
>>                         // solveQuadratic should be improved to get correct t extrema (1 ulp):
>>                         final int tExtremaCount = QuadCurve2D.solveQuadratic(deriv_coeff, tExtrema);
>>                         if (tExtremaCount > 0) {
>>                             // error condition = sum ( abs (coeff) ):
>>                             final double margin = Math.ulp(Math.abs(coeff[0])
>>                                     + Math.abs(coeff[1]) + Math.abs(coeff[2])
>>                                     + Math.abs(coeff[3]));
>> 
>>                             for (int i = 0; i < tExtremaCount; i++) {
>>                                 final double t = tExtrema[i];
>>                                 if (t > 0.0 && t < 1.0) {
>>                                     double x = coeff[0] + t * (coeff[1] + t * (coeff[2] + t * coeff[3]));
>>                                     if (x - margin < leftX) {
>>                                         leftX = x - margin;
>>                                     }
>>                                     if (x + margin > rightX) {
>>                                         rightX = x + margin;
>>                                     }
>>                                 }
>>                             }
>>                         }
>>                     }
>>                     if (coords[1] < topY || coords[1] > bottomY || coords[3] < topY || coords[3] > bottomY) {
>>                         final double dy32 = 3.0 * (coords[3] - coords[1]);
>>                         final double dy21 = 3.0 * (coords[1] - lastY);
>>                         coeff[3] = (coords[5] - lastY) - dy32;
>>                         coeff[2] = (dy32 - dy21);
>>                         coeff[1] = dy21;
>>                         coeff[0] = lastY;
>> 
>>                         deriv_coeff[0] = coeff[1];
>>                         deriv_coeff[1] = 2.0 * coeff[2];
>>                         deriv_coeff[2] = 3.0 * coeff[3];
>> 
>>                         int tExtremaCount = QuadCurve2D.solveQuadratic(deriv_coeff, tExtrema);
>>                         if (tExtremaCount > 0) {
>>                             // error condition = sum ( abs (coeff) ):
>>                             final double margin = Math.ulp(Math.abs(coeff[0])
>>                                     + Math.abs(coeff[1]) + Math.abs(coeff[2])
>>                                     + Math.abs(coeff[3]));
>> 
>>                             for (int i = 0; i < tExtremaCount; i++) {
>>                                 double t = tExtrema[i];
>>                                 if (t > 0.0 && t < 1.0) {
>>                                     double y = coeff[0] + t * (coeff[1] + t * (coeff[2] + t * coeff[3]));
>>                                     if (y - margin < topY) {
>>                                         topY = y - margin;
>>                                     }
>>                                     if (y + margin > bottomY) {
>>                                         bottomY = y + margin;
>>                                     }
>>                                 }
>>                             }
>>                         }
>>                     }
>>                     lastX = coords[4];
>>                     lastY = coords[5];
>>                     break;
>>                 case PathIterator.SEG_CLOSE:
>>                 default:
>>             }
>>         }
>
> Looks good, and it passes all the unit tests. I pushed an update with this code. (Although immediately after that I pushed a refactor for readability that you previously requested -- so the logic/margin is in the branch now but it looks a little different already...)

Here is the test result in marlin-math proving the margin condition is satisfied from small to huge cubic curves:
https://github.com/bourgesl/marlin-math/blob/main/results/findExtrema/jdk17-2021-11-14-edge-cubic.log
Inaccuracies are within margin ~ 0.5 proved.

-------------

PR: https://git.openjdk.java.net/jdk/pull/6227



More information about the client-libs-dev mailing list