
Sponsored by:

This story appeared on JavaWorld at
http://www.javaworld.com/javaworld/jw-09-2007/jw-09-checkboxtree.html

Swing-based tree layouts with CheckboxTree
A configurable tree component with checkable nodes

By Lorenzo Bigagli and Enrico Boldrini, JavaWorld.com, 09/11/07

CheckboxTree is an open source, Swing-based tree component with a checkbox in each of its nodes, similar to those commonly found in installers but missing from the
Swing GUI toolkit. In this article creators Lorenzo Bigagli and Enrico Boldrini introduce CheckboxTree and demonstrate its standout features, namely four
configurable check-propagation styles, grayed checkboxes, and a custom renderer that allows you to display radio buttons rather than checkboxes in your tree layouts.
The article includes the source code for CheckboxTree, which you may use or extend for your Swing GUI development projects.

Installation GUIs and application preference windows often feature checkbox-enabled tree components, but you won't find such a component in the Swing GUI toolkit.
Most developers either end up extending the Swing JTree ad-hoc or using one of the tree extensions available. We actually tried several of these components for a
recent project but found that none of them had quite the features, simplicity or flexibility we needed.

Some components were part of an overly complicated widget library or required extending specific classes that disrupted our class hierarchy design. Some were not
open source or relied on libraries that were not open source. Some had native dependencies. Most important, we needed a component that would support several
checkbox propagation styles in a tree layout. We also wanted grayable checkboxes to indicate if descendants of a given node were in the opposite checking state from
that node. So, like many developers before us, we created our CheckboxTree component from scratch.

CheckboxTree is a Swing JTree component with a checkbox in each of its nodes, as shown in Figure 1 (click the image for a live demonstration).

Figure 1. CheckboxTree: Checked, selected and grayed paths are visible

In this article we introduce CheckboxTree and explain its relationship to the Swing JTree classes. We also discuss its architecture and provide implementation details.
Finally, we highlight some of the current limitations of CheckboxTree and note improvements that could be made to it in the future. CheckboxTree is available under
the GPL license, so you are free to use it in your Swing development projects.

Background: JTree concepts and terminology
Before we begin describing CheckboxTree in detail, it might be helpful to quickly recall some Swing JTree concepts and terminology:

JTree, as described in the Swing documentation, is a "control that displays a set of hierarchical data as an outline."
A node is the basic unit of data displayed by a JTree. A specific node can be identified either by a TreePath or by its display row.
TreePath is an object that contains a JTree node and all its ancestors.
TreeModel is an object that manages the JTree data model based on the well-known MVC design pattern.
TreeSelectionModel is an object that manages user selections in a JTree, typically rendered by highlighting selected nodes.
TreeCellRenderer is used to style JTree nodes according to their content and status.

Using CheckboxTree
A key feature of CheckboxTree is that it does not require you to use tree nodes that implement a specific "checkable-node" interface (e.g., an interface with a method
isChecked). You can continue to work with your preferred tree model, such as the default TreeModel or a custom one, which makes it easier to integrate CheckboxTree
into your existing code.

You can use CheckboxTree by invoking one of the provided constructors, which are modeled after the standard JTree ones. The sample below shows how you would
construct a CheckboxTree with a default TreeModel.

CheckboxTree checkboxTree = new CheckboxTree();

Here is how you would construct a CheckboxTree from an existing TreeNode:

TreeNode yourRoot = new DefaultMutableTreeNode("foo"); CheckboxTree checkboxTree = new CheckboxTree(yourRoot);

http://www.javaworld.com/javaworld/jw-09-2007/jw-09-che... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?pagetos...

1 di 4 22/07/11 12.55

Here is how you would construct a CheckboxTree from an existing TreeModel:

Model yourTreeModel = new DefaultTreeModel(new DefaultMutableTreeNode("foo")); CheckboxTree checkboxTree = new CheckboxTree(yourTreeModel);

You could also set the data model at a later time, as shown here:

Model yourNewTreeModel = new DefaultTreeModel(new DefaultMutableTreeNode("bar")); checkboxTree.setModel(yourNewTreeModel);

Once constructed, your CheckboxTree is ready to listen for user input and respond.

State management and event handling
All CheckboxTree nodes include a checkbox. If the checkbox is enabled, the user can check it to indicate his or her selection. A checked node is a tree node whose
checkbox has been checked; in the same way, a checked path is a TreePath whose node has been checked. In CheckboxTree we use the term checking to indicate the
set of paths that are checked at a given point in time, just as in JTtree the term selection indicates the set of paths that are selected.

Going back to Figure 1 and playing with the applet, you will notice that the check events on a node may propagate to its descendants and/or ancestors, according to the
check-propagation style selected. We'll discuss check propagation below. You will also notice that some checkboxes have a grayed background: that means that the
checkbox of at least one descendant node is in the opposite state from that node. On the other hand, if a checkbox has a white background, you can be sure that the
checkboxes of all its descendants are in the same state. CheckboxTree uses a TreeCheckingModel to maintain the checking and background consistency. This is similar
to how a JTree maintains selection consistency by means of a TreeSelectionModel.

Some useful commands

Here is how you can retrieve the list of checked paths:

TreePath[] tp = checkboxTree.getCheckingPaths();

If you are only interested in retrieving the roots of your checked subtrees, you can use the following:

TreePath[] tp = checkboxTree.getCheckingRoots();

Here is how you would register a TreeCheckingListener to listen for changes to the checking state of your CheckboxTree.

checkboxTree.addTreeCheckingListener(new TreeCheckingListener() {
 public void valueChanged(TreeCheckingEvent e) {
 System.out.println("Checked paths changed: user clicked on "
 + (e.getLeadingPath().getLastPathComponent()));
 }
});

Customizing CheckboxTree
So far you have seen the basic usage of a CheckboxTree. In this section we'll introduce two ways to customize this component. First, we'll show you how to configure
the component's check propagation style. Then, we'll show you how to write a customized CheckboxTreeCellRenderer, which will allow you to display your favorite
checkbox control in a tree layout.

Configurable checking modes

In CheckboxTree, checking mode describes the way a check event is propagated to other checkboxes. We have implemented four checking modes for the component,
which can be set as shown in Listing 1. (Note that you can also add new modes by implementing your own TreeCheckingMode class.)

Listing 1. Checking modes in CheckboxTree

 checkboxTree.getCheckingModel().setCheckingMode(TreeCheckingModel.Check
ingMode.SIMPLE);

checkboxTree.getCheckingModel().setCheckingMode(TreeCheckingModel.Check
ingMode.PROPAGATE);

checkboxTree.getCheckingModel().setCheckingMode(TreeCheckingModel.Check
ingMode.PROPAGATE_PRESERVING_CHECK);

CheckboxTree.getCheckingModel().setCheckingMode(TreeCheckingModel.Check
ingMode.PROPAGATE_PRESERVING_UNCHECK);

Each of the above styles uses different rules to propagate a check event. The checking model takes care of the background accordingly. The modes are as follows:

Simple toggles the just-clicked checkbox only.
Propagate toggles the just-clicked checkbox and propagates the change down. In other words, if the clicked checkbox is checked all the descendants will be
checked; otherwise all the descendants will be unchecked.
Propagate preserving check propagates the change not only to descendants but also to ancestors. With regard to descendants this mode behaves exactly like the
Propagate mode. With regard to ancestors it checks/unchecks them as needed so that a node is checked if and only if all of its children are checked.
Propagate preserving uncheck propagates the change not only to descendants but also to ancestors. With regard to descendants this mode behaves exactly like
the Propagate mode. With regard to ancestors it checks/unchecks them as needed so that a node is unchecked if and only if all of its children are unchecked.

Checkbox rendering

CheckboxTree's DefaultCheckboxTreeCellRenderer renders a tree node using a textual label and a special checkbox that supports grayed background rendering. It is
also possible to customize checkbox rendering by implementing the CheckboxTreeCellRenderer interface.

This interface extends the Swing TreeCellRenderer interface in two ways: First, it re-declares the getTreeCellRendererComponent, just as a reminder for the
implementor to properly display the checking/grayed status of the node. We would have preferred to enforce this in some other way, such as by adding a method
parameter, but that would have required changes to the Swing classes, which we considered impractical.

Second, it declares the method isOnHotspot(int x, int y), which returns whether the specified relative coordinates insist on the intended checkbox control. This
information may be used by a mouse listener to determine whether to toggle a node or not. In fact, it allows CheckboxTree to accommodate an arbitrary
CheckboxTreeCellRenderer.

http://www.javaworld.com/javaworld/jw-09-2007/jw-09-che... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?pagetos...

2 di 4 22/07/11 12.55

Example: A custom CheckboxTreeCellRenderer

Figure 2 shows a CheckboxTree that has been customized to display radio buttons rather than checkboxes. Other custom renderers could use their own custom
checkboxes rather than CheckboxTree's quadristate checkbox. It is possible to customize a CheckboxTreeCellRenderer in many different ways. For instance, in one
project we put in the CheckboxTree objects belonging to different classes. A custom CheckboxTreeCellRenderer then showed a different icon as needed.

Figure 2. A customized CheckboxTreeCellRenderer

Listing 2 shows the RadioButtonTree implementation. You could use this code as a starting point to write a new customized renderer.

Listing 2. The RadioButtonTree

public class RadioButtonTreeCellRenderer implements
CheckboxTreeCellRenderer {

 JRadioButton button = new JRadioButton();
 JPanel panel = new JPanel();
 JLabel label = new JLabel();

 public boolean isOnHotspot(int x, int y) {
 return (button.getBounds().contains(x, y));
 }

 public RadioButtonTreeCellRenderer() {
 label.setFocusable(true);
 label.setOpaque(true);
 panel.setLayout(new FlowLayout(FlowLayout.LEFT, 0, 0));
 panel.add(button);
 panel.add(label);
 button.setBackground(UIManager.getColor("Tree.textBackground"));
 panel.setBackground(UIManager.getColor("Tree.textBackground"));
 }

 public Component getTreeCellRendererComponent(JTree tree, Object
value, boolean selected, boolean expanded, boolean leaf, int row,
boolean hasFocus) {
 label.setText(value.toString());
 if (selected)

label.setBackground(UIManager.getColor("Tree.selectionBackground"));
 else
 label.setBackground(UIManager.getColor("Tree.textBackground"));
 TreeCheckingModel checkingModel = ((CheckboxTree)
tree).getCheckingModel();
 TreePath path = tree.getPathForRow(row);
 boolean enabled = checkingModel.isPathEnabled(path);
 boolean checked = checkingModel.isPathChecked(path);
 boolean grayed = checkingModel.isPathGreyed(path);
 button.setEnabled(enabled);
 if (grayed) {
 label.setForeground(Color.lightGray);
 } else {
 label.setForeground(Color.black);
 }
 button.setSelected(checked);
 return panel;
 }

 public static void main(String[] args) {
 CheckboxTree tree = new CheckboxTree();
 tree.getCheckingModel().setCheckingMode(CheckingMode.SIMPLE);
 tree.setCellRenderer(new RadioButtonTreeCellRenderer());
 JFrame frame = new JFrame("RadioButton tree");
 frame.add(tree);
 tree.expandAll();
 frame.pack();
 frame.setVisible(true);
 }
}

Inside CheckboxTree
CheckboxTree extends the Swing JTree with features for visualizing and managing checkboxes and checking events. We created a specialized TreeCheckingModel
class to manage checking events in CheckboxTree. Our TreeCheckingModel has an API similar to TreeSelectionModel, which is the class that manages selection
events for Swing GUI components. The TreeCheckingModel API is easy to use for any developer familiar with the Swing GUI toolkit. The similarity between our
TreeCheckingModel and the Swing TreeSelectionModel extends to the class hierarchy and inheritance structure, as you can see in Figure 3.

http://www.javaworld.com/javaworld/jw-09-2007/jw-09-che... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?pagetos...

3 di 4 22/07/11 12.55

Figure 3. TreeSelectionModel (yellow classes) and TreeCheckingModel (green classes) compared; click for a larger image

You will note that the JTree class uses a TreeModel, a TreeCellRenderer, and a TreeSelectionModel to carry out its functions. The CheckboxTree component
extends JTree to also use the TreeCheckingModel API. Moreover, CheckboxTree requires an implementation of CheckboxTreeCellRenderer, which is a
TreeCellRenderer that displays a checkbox or similar components inside each tree node (we provide a DefaultCheckboxTreeCellRenderer with a
QuadristateCheckbox).

We needed a TreeCellRenderer capable of displaying a checkbox in four states: checked, unchecked, gray checked, and gray unchecked. For this we implemented a
QuadristateCheckbox, which is able to support a GUI's given look and feel and display the four states. States are managed by a model called the
QuadristateButtonModel. The class hierarchy for the QuadristateButtonModel is shown in Figure 4. The QuadristateCheckbox is actually a hack that allows us to
display two new states within a normal JCheckbox. Our hack is adapted from a similar one created by Dr. Heinz M. Kabutz for his TristateCheckBox.

Figure 4. Class diagram of the QuadristateCheckbox

The future of CheckboxTree
We plan to fix some known limitations to CheckboxTree in future releases. The main limitation has to do with the component's performance when dealing with very big
data models. For example, if a user clicks on a node with many descendants, the GUI freezes for the time required to insert all the affected subpaths in the relevant
TreeCheckingModel data structures. We plan to fix this by optimizing the memorization of the descendants' checking state. Only the ancestors will need to be stored in
an appropriate set, which will greatly reduce execution time.

Another limitation concerns the rendering of gray states in CheckboxTree checkboxes, which is done by setting the armed property to true in the model. The price of
this is that we can't show roll-over events on the checkboxes. A better implementation of the QuadristateCheckbox will allow us to manage roll-over events and
display them appropriately.

Another rendering problem occurs when the checkbox position inside the renderer is relative to the path to be displayed. Swing design calls for a unique renderer object
that is used by every row. Thus we can't rely on it to know if the click has be made inside a checkbox, when different rows have checkboxes at different positions. If
you have ideas about fixing any of these problems, or ideas for new features, please feel free to contribute!

In conclusion
In this article we have introduced CheckboxTree, a handy new widget for your Swing GUI development. While other JTree components have been extended to include
checkboxes, we believe CheckboxTree offers unique features and flexibility. We've explained how CheckboxTree extends from the Swing JTree widget, introduced its
unique, configurable propagation model and grayed checkboxes, and highlighted some of the implementation details that could make it easier for you to use and extend
CheckboxTree.

See the Resources section to learn more about the Swing GUI toolkit, Swing development, and other components that extend the functionality of the Swing JTree. Join
the discussion that starts at the bottom of this page to let us know about your experiences with Swing JTree components -- especially CheckboxTree!

About the author

Lorenzo Bigagli is a researcher at the Italian National Research Council and the University of Florence, currently taking a PhD on advanced technologies for Spatial
Data Infrastructures. He has loved Java for more than 10 years (and counting), particularly for its support for concurrent programming and networking.

Enrico Boldrini is a computer scientist currently taking a MSc at the University of Florence. He also works for the Italian National Research Council (in the Earth
Space Information Technologies Laboratory) developing Java applications for Geomatics.

Read more about Core Java in JavaWorld's Core Java section.

All contents copyright 1995-2011 Java World, Inc. http://www.javaworld.com

http://www.javaworld.com/javaworld/jw-09-2007/jw-09-che... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?pagetos...

4 di 4 22/07/11 12.55

Research Centers

Core Java

Enterprise Java

Mobile Java

Tools & Methods

JavaWorld Archives

Site Resources

Featured Articles

News & Views

Community

Java Q&A

JW Blogs

Podcasts

Site Map

Careers

Newsletters

Webcasts

Whitepapers

RSS Feeds

About JavaWorld

Advertise

Write for JW

Recent:

10 world-changing technologies for the future

Use == (or !=) to compare Java enums

Google's top priority isn't enterprise IT

Why should users pay for coders' mistakes?

Book review: Java: The Good Parts

From the archives:

Understanding Actor concurrency, Part 1 (2009)

Java concurrency with thread gates (2009)

Hyper-threaded Java (2006)

Your rating: None

Log in Register

Home » Java Q&A » JW Talkback

Performance

Submitted by Anonymous on Mon, 12/07/2009 - 11:07.

Tags: Core Java Java Development Tools Swing/GUI Programming

Back to:

www.javaworld.com/javaworld/jw-09-2007/jw-09-checkboxtree.html.

The design of this component is really great, especially with regards
to the fact that it doesn't require you to use the TreeNode interface
when you need dig-in mode (as opposed to the similar JIDE
component). It supports your custom TreeModel right out of the box!

However, the performance is far from good enough. Selecting a node
with about 2000 child nodes in dig-in mode takes about 20 seconds -
which is far from what one could call a responsive component.

Average:

Login to post comments Email this page Printer-friendly version

Having checkbox only for parent nodes
Submitted by gpshankar on Wed, 06/29/2011 - 01:04.

Hi,
with this checkboxtree, is it possible to customize it for having check
boxes only for the parent nodes and not the leaf nodes?. If so,
please guide me how to do so.

Thanks

Gowri

»
Login to post comments

Link
Submitted by Athen OShea on Fri, 06/17/2011 - 13:36.

I believe you'll find the updated Checkbox Tree here:

http://www.essi-lab.eu/projectsSites/lablib-checkboxtree
/download.html

Cheers,

Athen O'Shea
Editor, JavaWorld

»
Login to post comments

Need updated download link
Submitted by judy_kennedy on Wed, 06/15/2011 - 15:38.

JW's Most Read

Newsletter sign-up View all newsletters

Enterprise Java Newsletter
Stay up to date on the latest tutorials and Java community

news posted on JavaWorld

Subscribe

Performance | JavaWorld's Daily Brew http://www.javaworld.com/community/?q=node/3788

1 di 3 22/07/11 12.53

Sponsored Links

Java Website Hosting
Shared & Private Tomcat Plans Avail Over 10yrs Of Java
Web Hosting Exp!

Buy a link now

Slow Apps? Overloaded DBMS? - FREE Download
FREE Download Feb 14 - March 7th Eliminate bottlenecks
& maximize performance ScaleOut StateServer®

I tried the download link in the April 8th message, but that didn't
work for me either. Is there another link I can try for downloading
CheckboxTree?

Thanks.

»
Login to post comments

I had this problem too using
Submitted by Anonymous on Fri, 05/14/2010 - 11:18.

I had this problem too using version 3.2-SNAPSHOT. Using version 3.1.1 fixed this problem.

Otherwise, fantastically useful Swing component guys, thank you!

»
Login to post comments

Error
Submitted by Anonymous on Tue, 04/20/2010 - 15:33.

I tried to use the CheckboxTree but couldn't create one without error. Not even the default constructor worked.

The overridden method
public void setCellRenderer(TreeCellRenderer tcl)..

fails by default as swing buts in the parent (JTree) an invalid default 'TreeCellRenderer' in it...

»
Login to post comments

donwload link
Submitted by Anonymous on Thu, 04/08/2010 - 13:33.

http://ulisse.pin.unifi.it:8081/nexus/index.html#nexus-search;quick~labl...

only select the file that you want download and press the server pom or artifac (i recommended artifac)

sorry my english is bad...

»
Login to post comments

Download
Submitted by Anonymous on Tue, 04/06/2010 - 02:06.

Can anyone provide me the download link please. Not able to find download link on the page.

»
Login to post comments

Download
Submitted by Anonymous on Fri, 02/05/2010 - 06:14.

The download server is down and I really need this checkbox tree, so could somebody give me an alternative link, please?

»
Login to post comments

It rocks !
Submitted by Anonymous on Fri, 01/08/2010 - 10:26.

It rocks !

»
Login to post comments

Sponsored Links
ManageEngine: End-to-End Java Performance Management. Download Product Now!

OSCON Java
July 25-27, Portland, OR. See what's making Java hot again: Java 7, Android dev, JVM & more oscon.com/java

OSCON Java
July 25-27, Portland, OR. Open source & Java: A killer combination for developers. See the best of both oscon.com/java

Reliable Java Web Hosting

Performance | JavaWorld's Daily Brew http://www.javaworld.com/community/?q=node/3788

2 di 3 22/07/11 12.53

For $9.95 Unlimited Storage and Bandwidth Private JVM, Tomcat, MySQL, J2EE, JDK.

iPhone Enterprise Management Service
Best Practices Guide For Supporting iPhones & iPads In An Enterprise.

Bandwidth Monitoring w/ NetFlow Analyzer
Monitor Bandwidth, Identify top talkers, do better capacity planning. Try Now!

HelpDesk or Customer Support
Web based IT HelpDesk with Asset Mgmt or Customer support Software with Account ...

INPUT Federal Telecom Report FY 2010-15
Maximize Your Business’ Understanding of Technology in the Communications Market

Buy a link now

RESEARCH CENTERS IDG Network
CFOworld

CIO

Computerworld

CSO

DEMO

GamePro

Games.net

IDG Connect

IDG Knowledge Hub

IDG TechNetwork

IDG Ventures

InfoWorld

ITworld

JavaWorld

LinuxWorld

Macworld

Network World

PC World

Contact Us | Terms of Service/Privacy | AdChoices Copyright, 2006-2011 Infoworld, Inc. All rights reserved.

Performance | JavaWorld's Daily Brew http://www.javaworld.com/community/?q=node/3788

3 di 3 22/07/11 12.53

	CBT.pdf
	comments CBT

