RFR 7131192: BigInteger.doubleValue() is depressingly slow

Brian Burkhalter brian.burkhalter at oracle.com
Mon Jun 17 18:25:33 UTC 2013


I am unable at the moment to copy anything to cr.openjdk.java.net so I am including the webrev as a patch below. I'll copy it to the online location as soon as possible.

The patch included at the end of this message fixes this issue

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7131192

Code review of the source and accompanying test was effected and all pertinent regression tests passed. Previous performance testing showed a massive improvement:

http://mail.openjdk.java.net/pipermail/core-libs-dev/2013-February/014697.html

Note that as correctness testing of 7131192 depends on the patch

http://mail.openjdk.java.net/pipermail/core-libs-dev/2013-June/017958.html

having already been applied, the present fix cannot be integrated until this prior patch has been applied.

Thanks,

Brian

# HG changeset patch
# Parent 35d5a218004fb1fc64c92fd3151d0a48d4f378e9
7131192: BigInteger.doubleValue() is depressingly slow.
Summary: Replace invocations Double.parseDouble(toString()) and Float.parseFloat(toString()) with direct implementation of conversion from signum and mag.
Reviewed-by: TBD
Contributed-by: Louis Wasserman <lowasser at google.com>

diff -r 35d5a218004f src/share/classes/java/math/BigInteger.java
--- a/src/share/classes/java/math/BigInteger.java	Thu Jun 13 14:18:52 2013 -0700
+++ b/src/share/classes/java/math/BigInteger.java	Fri Jun 14 14:10:43 2013 -0700
@@ -33,6 +33,9 @@
 import java.io.*;
 import java.util.Arrays;
 
+import sun.misc.DoubleConsts;
+import sun.misc.FloatConsts;
+
 /**
  * Immutable arbitrary-precision integers.  All operations behave as if
  * BigIntegers were represented in two's-complement notation (like Java's
@@ -2966,8 +2969,72 @@
      * @return this BigInteger converted to a {@code float}.
      */
     public float floatValue() {
-        // Somewhat inefficient, but guaranteed to work.
-        return Float.parseFloat(this.toString());
+        if (signum == 0) {
+            return 0.0f;
+        }
+
+        int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
+
+        // exponent == floor(log2(abs(this)))
+        if (exponent < Long.SIZE - 1) {
+            return longValue();
+        } else if (exponent > Float.MAX_EXPONENT) {
+            return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
+        }
+
+        /*
+         * We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit"
+         * one bit. To make rounding easier, we pick out the top
+         * SIGNIFICAND_BITS + 2 bits, so we have one to help us round up or
+         * down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2
+         * bits, and signifFloor the top SIGNIFICAND_BITS + 1.
+         * 
+         * It helps to consider the real number signif = abs(this) *
+         * 2^(SIGNIFICAND_BITS - exponent).
+         */
+        int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;
+
+        int twiceSignifFloor;
+        // twiceSignifFloor will be == abs().shiftRight(shift).intValue()
+        // We do the shift into an int directly to improve performance.
+
+        int nBits = shift & 0x1f;
+        int nBits2 = 32 - nBits;
+
+        if (nBits == 0) {
+            twiceSignifFloor = mag[0];
+        } else {
+            twiceSignifFloor = mag[0] >>> nBits;
+            if (twiceSignifFloor == 0) {
+                twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
+            }
+        }
+
+        int signifFloor = twiceSignifFloor >> 1;
+        signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit
+
+        /*
+         * We round up if either the fractional part of signif is strictly
+         * greater than 0.5 (which is true if the 0.5 bit is set and any lower
+         * bit is set), or if the fractional part of signif is >= 0.5 and
+         * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
+         * are set). This is equivalent to the desired HALF_EVEN rounding.
+         */
+        boolean increment = (twiceSignifFloor & 1) != 0
+                && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
+        int signifRounded = increment ? signifFloor + 1 : signifFloor;
+        int bits = ((exponent + FloatConsts.EXP_BIAS)) 
+                << (FloatConsts.SIGNIFICAND_WIDTH - 1);
+        bits += signifRounded;
+        /*
+         * If signifRounded == 2^24, we'd need to set all of the significand
+         * bits to zero and add 1 to the exponent. This is exactly the behavior
+         * we get from just adding signifRounded to bits directly. If the
+         * exponent is Float.MAX_EXPONENT, we round up (correctly) to
+         * Float.POSITIVE_INFINITY.
+         */
+        bits |= signum & FloatConsts.SIGN_BIT_MASK;
+        return Float.intBitsToFloat(bits);
     }
 
     /**
@@ -2986,8 +3053,80 @@
      * @return this BigInteger converted to a {@code double}.
      */
     public double doubleValue() {
-        // Somewhat inefficient, but guaranteed to work.
-        return Double.parseDouble(this.toString());
+        if (signum == 0) {
+            return 0.0;
+        }
+
+        int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
+
+        // exponent == floor(log2(abs(this))Double)
+        if (exponent < Long.SIZE - 1) {
+            return longValue();
+        } else if (exponent > Double.MAX_EXPONENT) {
+            return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
+        }
+
+        /*
+         * We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit"
+         * one bit. To make rounding easier, we pick out the top
+         * SIGNIFICAND_BITS + 2 bits, so we have one to help us round up or
+         * down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2
+         * bits, and signifFloor the top SIGNIFICAND_BITS + 1.
+         * 
+         * It helps to consider the real number signif = abs(this) *
+         * 2^(SIGNIFICAND_BITS - exponent).
+         */
+        int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;
+
+        long twiceSignifFloor;
+        // twiceSignifFloor will be == abs().shiftRight(shift).longValue()
+        // We do the shift into a long directly to improve performance.
+
+        int nBits = shift & 0x1f;
+        int nBits2 = 32 - nBits;
+
+        int highBits;
+        int lowBits;
+        if (nBits == 0) {
+            highBits = mag[0];
+            lowBits = mag[1];
+        } else {
+            highBits = mag[0] >>> nBits;
+            lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
+            if (highBits == 0) {
+                highBits = lowBits;
+                lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
+            }
+        }
+
+        twiceSignifFloor = ((highBits & LONG_MASK) << 32)
+                | (lowBits & LONG_MASK);
+
+        long signifFloor = twiceSignifFloor >> 1;
+        signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit
+
+        /*
+         * We round up if either the fractional part of signif is strictly
+         * greater than 0.5 (which is true if the 0.5 bit is set and any lower
+         * bit is set), or if the fractional part of signif is >= 0.5 and
+         * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
+         * are set). This is equivalent to the desired HALF_EVEN rounding.
+         */
+        boolean increment = (twiceSignifFloor & 1) != 0
+                && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
+        long signifRounded = increment ? signifFloor + 1 : signifFloor;
+        long bits = (long) ((exponent + DoubleConsts.EXP_BIAS)) 
+                << (DoubleConsts.SIGNIFICAND_WIDTH - 1);
+        bits += signifRounded;
+        /*
+         * If signifRounded == 2^53, we'd need to set all of the significand
+         * bits to zero and add 1 to the exponent. This is exactly the behavior
+         * we get from just adding signifRounded to bits directly. If the
+         * exponent is Double.MAX_EXPONENT, we round up (correctly) to
+         * Double.POSITIVE_INFINITY.
+         */
+        bits |= signum & DoubleConsts.SIGN_BIT_MASK;
+        return Double.longBitsToDouble(bits);
     }
 
     /**
diff -r 35d5a218004f test/java/math/BigInteger/PrimitiveConversionTests.java
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test/java/math/BigInteger/PrimitiveConversionTests.java	Fri Jun 14 14:10:43 2013 -0700
@@ -0,0 +1,82 @@
+import static java.math.BigInteger.ONE;
+
+import java.math.BigInteger;
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.List;
+import java.util.Random;
+
+/**
+ * @test
+ * @bug 7131192
+ * @summary This test ensures that BigInteger.floatValue() and
+ *          BigInteger.doubleValue() behave correctly.
+ * @author Louis Wasserman
+ */
+public class PrimitiveConversionTests {
+    static final List<BigInteger> ALL_BIGINTEGER_CANDIDATES;
+
+    static {
+        List<BigInteger> samples = new ArrayList<>();
+        // Now add values near 2^N for lots of values of N.
+        for (int exponent : Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7, 31, 32, 33,
+                34, 62, 63, 64, 65, 71, 72, 73, 79, 80, 81, 255, 256, 257, 511,
+                512, 513, Double.MAX_EXPONENT - 1, Double.MAX_EXPONENT,
+                Double.MAX_EXPONENT + 1, 2000, 2001, 2002)) {
+            BigInteger x = ONE.shiftLeft(exponent);
+            for (BigInteger y : Arrays.asList(x, x.add(ONE), x.subtract(ONE))) {
+                samples.add(y);
+                samples.add(y.negate());
+            }
+        }
+
+        Random rng = new Random(1234567);
+        for (int i = 0; i < 2000; i++) {
+            samples.add(new BigInteger(rng.nextInt(2000), rng));
+        }
+
+        ALL_BIGINTEGER_CANDIDATES = Collections.unmodifiableList(samples);
+    }
+
+    public static int testDoubleValue() {
+        int failures = 0;
+        for (BigInteger big : ALL_BIGINTEGER_CANDIDATES) {
+            double expected = Double.parseDouble(big.toString());
+            double actual = big.doubleValue();
+
+            // should be bitwise identical
+            if (Double.doubleToRawLongBits(expected) != Double
+                    .doubleToRawLongBits(actual)) {
+                System.out.println(big);
+                failures++;
+            }
+        }
+        return failures;
+    }
+
+    public static int testFloatValue() {
+        int failures = 0;
+        for (BigInteger big : ALL_BIGINTEGER_CANDIDATES) {
+            float expected = Float.parseFloat(big.toString());
+            float actual = big.floatValue();
+
+            // should be bitwise identical
+            if (Float.floatToRawIntBits(expected) != Float
+                    .floatToRawIntBits(actual)) {
+                System.out.println(big + " " + expected + " " + actual);
+                failures++;
+            }
+        }
+        return failures;
+    }
+
+    public static void main(String[] args) {
+        int failures = testDoubleValue();
+        failures += testFloatValue();
+        if (failures > 0) {
+            throw new RuntimeException("Incurred " + failures
+                    + " failures while testing primitive conversions.");
+        }
+    }
+}


More information about the core-libs-dev mailing list