JDK 9 RFR of 8058505: BigIntegerTest does not exercise Burnikel-Ziegler division
Brian Burkhalter
brian.burkhalter at oracle.com
Mon Sep 15 20:30:37 UTC 2014
Hello,
This is a test-only change.
Issue: https://bugs.openjdk.java.net/browse/JDK-8058505
Webrev: http://cr.openjdk.java.net/~bpb/8058505/webrev.00/
I verified that the updated version passes (as mentioned below) and in fact exercises the B-Z division branch of the library code.
Thanks,
Brian
On Sep 15, 2014, at 7:17 AM, Robert Gibson <robbiexgibson at yahoo.com> wrote:
> Here is a patch to fix the test bug mentioned previously. The Burnikel-Ziegler division code is now exercised, and you'll be glad to know that the tests still pass!
> Robert
>
> --- BigIntegerTest.java 2014-09-15 15:55:47.632012000 +0200
> +++ BigIntegerTestPatched.java 2014-09-15 16:07:53.363563000 +0200
> @@ -71,6 +71,7 @@
> static final int BITS_TOOM_COOK_SQUARE = 6912;
> static final int BITS_SCHOENHAGE_BASE = 640;
> static final int BITS_BURNIKEL_ZIEGLER = 2560;
> + static final int BITS_BURNIKEL_ZIEGLER_OFFSET = 1280;
> static final int ORDER_SMALL = 60;
> static final int ORDER_MEDIUM = 100;
> @@ -288,19 +289,19 @@
> * where {@code abs(u) > abs(v)} and {@code a > b && b > 0}, then if
> * {@code w/z = q1*z + r1} and {@code u/v = q2*v + r2}, then
> * {@code q1 = q2*pow(2,a-b)} and {@code r1 = r2*pow(2,b)}. The test
> - * ensures that {@code v} is just under the B-Z threshold and that {@code w}
> - * and {@code z} are both over the threshold. This implies that {@code u/v}
> - * uses the standard division algorithm and {@code w/z} uses the B-Z
> - * algorithm. The results of the two algorithms are then compared using the
> - * observation described in the foregoing and if they are not equal a
> - * failure is logged.
> + * ensures that {@code v} is just under the B-Z threshold, that {@code z} is
> + * over the threshold and {@code w} is much larger than {@code z}. This
> + * implies that {@code u/v} uses the standard division algorithm and
> + * {@code w/z} uses the B-Z algorithm. The results of the two algorithms
> + * are then compared using the observation described in the foregoing and
> + * if they are not equal a failure is logged.
> */
> public static void divideLarge() {
> int failCount = 0;
> - BigInteger base = BigInteger.ONE.shiftLeft(BITS_BURNIKEL_ZIEGLER - 33);
> + BigInteger base = BigInteger.ONE.shiftLeft(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 33);
> for (int i=0; i<SIZE; i++) {
> - BigInteger addend = new BigInteger(BITS_BURNIKEL_ZIEGLER - 34, rnd);
> + BigInteger addend = new BigInteger(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 34, rnd);
> BigInteger v = base.add(addend);
> BigInteger u = v.multiply(BigInteger.valueOf(2 + rnd.nextInt(Short.MAX_VALUE - 1)));
> @@ -312,14 +313,14 @@
> v = v.negate();
> }
> - int a = 17 + rnd.nextInt(16);
> + int a = BITS_BURNIKEL_ZIEGLER_OFFSET + rnd.nextInt(16);
> int b = 1 + rnd.nextInt(16);
> - BigInteger w = u.multiply(BigInteger.valueOf(1L << a));
> - BigInteger z = v.multiply(BigInteger.valueOf(1L << b));
> + BigInteger w = u.multiply(BigInteger.ONE.shiftLeft(a));
> + BigInteger z = v.multiply(BigInteger.ONE.shiftLeft(b));
> BigInteger[] divideResult = u.divideAndRemainder(v);
> - divideResult[0] = divideResult[0].multiply(BigInteger.valueOf(1L << (a - b)));
> - divideResult[1] = divideResult[1].multiply(BigInteger.valueOf(1L << b));
> + divideResult[0] = divideResult[0].multiply(BigInteger.ONE.shiftLeft(a - b));
> + divideResult[1] = divideResult[1].multiply(BigInteger.ONE.shiftLeft(b));
> BigInteger[] bzResult = w.divideAndRemainder(z);
> if (divideResult[0].compareTo(bzResult[0]) != 0 ||
More information about the core-libs-dev
mailing list