[PATCH] 4511638: Double.toString(double) sometimes produces incorrect results
raffaello.giulietti at gmail.com
raffaello.giulietti at gmail.com
Wed Sep 26 17:39:44 UTC 2018
Hi,
the current specification of Double.toString(double) is not precise
enough to uniquely determine the resulting String. It leaves leeway for
interpretation, thus potentially allowing implementations to return
slightly different results, even from one release to the next [1].
In addition, as the bug description points out, the current
implementation does not even always meet its own specification, leading
to results that are sometimes longer than needed.
To address and overcome both issues, a new specification in the form of
Javadoc associated to Double.toString(double) and Float.toString(float)
is proposed, along with a clean-room re-implementation.
The intent of the specification is to explicitly separate the
determination of the unique decimal number to represent the floating
point argument (double/float) from its formatting as a String.
The clean-room implementation enjoys the following properties:
* No objects at all are instantiated except for the resulting String and
its backing storage.
* Only arithmetic on longs/ints is performed.
* The decimal selection algorithm performs at most one division on longs
per conversion and is loop-free.
* The digits extraction algorithm is totally division-free.
* None of the anomalies described in the bug report have been observed.
* The new Double.toString(double) speedup with respect to the current
implementation, according to jmh, is better than 13x when measured over
bitwise uniformly distributed random samples.
* In the case of Float.toString(float), *all* results of the 2^32 float
values have been extensively tested to meet the specification.
* In the case of Double.toString(double), as it is infeasible to test
all results, several billions of random doubles have been extensively
tested.
Since there's a change in the specification, according to my sponsor and
the formalities it has to undergo a CSR.
The submitted code contains both the changes to the current
implementation and extensive jtreg tests.
While I've struggled to keep the code within the 80 chars/line limit,
mercurial still generates longer lines. Thus, to avoid possible problems
with the email systems, the code is submitted both inline and as an
attachment. Hope at least one copy makes its way without errors.
Greetings
Raffaello
[1] https://bugs.openjdk.java.net/browse/JDK-4511638
# HG changeset patch
# User lello
# Date 1537948169 -7200
# Wed Sep 26 09:49:29 2018 +0200
# Node ID 6bd9d2c45440c578b93d2f07e5eaea73928be4d5
# Parent 5f931e3e7a63b550d832d2624db32033b875c720
Patches to fix JDK-4511638
diff --git a/src/java.base/share/classes/java/lang/Double.java
b/src/java.base/share/classes/java/lang/Double.java
--- a/src/java.base/share/classes/java/lang/Double.java
+++ b/src/java.base/share/classes/java/lang/Double.java
@@ -25,6 +25,7 @@
package java.lang;
+import jdk.internal.math.DoubleToDecimal;
import jdk.internal.math.FloatingDecimal;
import jdk.internal.math.DoubleConsts;
import jdk.internal.HotSpotIntrinsicCandidate;
@@ -139,69 +140,108 @@
public static final Class<Double> TYPE = (Class<Double>)
Class.getPrimitiveClass("double");
/**
- * Returns a string representation of the {@code double}
- * argument. All characters mentioned below are ASCII characters.
- * <ul>
- * <li>If the argument is NaN, the result is the string
- * "{@code NaN}".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is negative,
- * the first character of the result is '{@code -}'
- * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
- * appears in the result. As for the magnitude <i>m</i>:
+ * Returns a string rendering of the {@code double} argument.
+ *
+ * <p>The characters of the result are all drawn from the ASCII set.
* <ul>
- * <li>If <i>m</i> is infinity, it is represented by the characters
- * {@code "Infinity"}; thus, positive infinity produces the result
- * {@code "Infinity"} and negative infinity produces the result
- * {@code "-Infinity"}.
+ * <li> Any NaN, whether quiet or signaling, is rendered
symbolically
+ * as {@code "NaN"}, regardless of the sign bit.
+ * <li> The infinities +∞ and -∞ are rendered as
+ * {@code "Infinity"} and {@code "-Infinity"}, respectively.
+ * <li> The positive and negative zeroes are rendered as
+ * {@code "0.0"} and {@code "-0.0"}, respectively.
+ * <li> Otherwise {@code v} is finite and non-zero.
+ * It is rendered in two stages:
+ * <ul>
+ * <li> <em>Selection of a decimal</em>: A well-specified
non-zero
+ * decimal <i>d</i> is selected to represent {@code v}.
+ * <li> <em>Formatting as a string</em>: The decimal
<i>d</i> is
+ * formatted as a string, either in plain or in computerized
+ * scientific notation, depending on its value.
+ * </ul>
+ * </ul>
*
- * <li>If <i>m</i> is zero, it is represented by the characters
- * {@code "0.0"}; thus, negative zero produces the result
- * {@code "-0.0"} and positive zero produces the result
- * {@code "0.0"}.
- *
- * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
- * than 10<sup>7</sup>, then it is represented as the integer part of
- * <i>m</i>, in decimal form with no leading zeroes, followed by
- * '{@code .}' ({@code '\u005Cu002E'}), followed by one or
- * more decimal digits representing the fractional part of <i>m</i>.
+ * <p>The selected decimal <i>d</i> has a length <i>n</i> if it can be
+ * written as <i>d</i> = <i>c</i>·10<sup><i>q</i></sup> for some
+ * integers <i>q</i> and <i>c</i> meeting 10<sup><i>n</i>-1</sup> ≤
+ * |<i>c</i>| < 10<sup><i>n</i></sup>. It has all the following
+ * properties:
+ * <ul>
+ * <li> It rounds to {@code v} according to the usual
round-to-closest
+ * rule of IEEE 754 floating-point arithmetic.
+ * <li> Among the decimals above, it has a length of 2 or more.
+ * <li> Among all such decimals, it is one of those with the
shortest
+ * length.
+ * <li> Among the latter ones, it is the one closest to {@code
v}. Or
+ * if there are two that are equally close to {@code v}, it is
the one
+ * whose least significant digit is even.
+ * </ul>
+ * More formally, let <i>d'</i> =
<i>c'</i>·10<sup><i>q'</i></sup>
+ * ≠ <i>d</i> be any other decimal that rounds to {@code v}
according to
+ * IEEE 754 and of a length <i>n'</i>. Then:
+ * <ul>
+ * <li> either <i>n'</i> = 1, thus <i>d'</i> is too short;
+ * <li> or <i>n'</i> > <i>n</i>, thus <i>d'</i> is too long;
+ * <li> or <i>n'</i> = <i>n</i> and
+ * <ul>
+ * <li> either |<i>d</i> - {@code v}| < |<i>d'</i> -
{@code v}|:
+ * thus <i>d'</i> is farther from {@code v};
+ * <li> or |<i>d</i> - {@code v}| = |<i>d'</i> - {@code v}| and
+ * <i>c</i> is even while <i>c'</i> is odd
+ * </ul>
+ * </ul>
*
- * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
- * equal to 10<sup>7</sup>, then it is represented in so-called
- * "computerized scientific notation." Let <i>n</i> be the unique
- * integer such that 10<sup><i>n</i></sup> ≤ <i>m</i> {@literal <}
- * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
- * mathematically exact quotient of <i>m</i> and
- * 10<sup><i>n</i></sup> so that 1 ≤ <i>a</i> {@literal <} 10. The
- * magnitude is then represented as the integer part of <i>a</i>,
- * as a single decimal digit, followed by '{@code .}'
- * ({@code '\u005Cu002E'}), followed by decimal digits
- * representing the fractional part of <i>a</i>, followed by the
- * letter '{@code E}' ({@code '\u005Cu0045'}), followed
- * by a representation of <i>n</i> as a decimal integer, as
- * produced by the method {@link Integer#toString(int)}.
- * </ul>
- * </ul>
- * How many digits must be printed for the fractional part of
- * <i>m</i> or <i>a</i>? There must be at least one digit to represent
- * the fractional part, and beyond that as many, but only as many, more
- * digits as are needed to uniquely distinguish the argument value from
- * adjacent values of type {@code double}. That is, suppose that
- * <i>x</i> is the exact mathematical value represented by the decimal
- * representation produced by this method for a finite nonzero argument
- * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
- * to <i>x</i>; or if two {@code double} values are equally close
- * to <i>x</i>, then <i>d</i> must be one of them and the least
- * significant bit of the significand of <i>d</i> must be {@code 0}.
+ * <p>The selected decimal <i>d</i> is then formatted as a string.
+ * If <i>d</i> < 0, the first character of the string is the sign
+ * '{@code -}'. Let |<i>d</i>| = <i>m</i>·10<sup><i>k</i></sup>,
+ * for the unique pair of integer <i>k</i> and real <i>m</i> meeting
+ * 1 ≤ <i>m</i> < 10. Also, let the decimal expansion of
<i>m</i> be
+ *
<i>m</i><sub>1</sub> . <i>m</i><sub>2</sub> <!--
+ * -->… <i>m</i><sub><i>i</i></sub>,
+ * with <i>i</i> ≥ 1 and <i>m</i><sub><i>i</i></sub> ≠ 0.
+ * <ul>
+ * <li>Case -3 ≤ k < 0: |<i>d</i>| is formatted as
+ * 0 . 0…0<i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>,
+ * where there are exactly -<i>k</i> leading zeroes before
+ * <i>m</i><sub>1</sub>, including the zero to the left of the
+ * decimal point; for example, {@code "0.01234"}.
+ * <li>Case 0 ≤ <i>k</i> < 7:
+ * <ul>
+ * <li>Subcase <i>i</i> < <i>k</i> + 2:
+ * |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>0…0 . 0,
+ * where there are exactly <i>k</i> + 2 - <i>i</i> trailing
zeroes
+ * after <i>m</i><sub><i>i</i></sub>, including the zero to the
+ * right of the decimal point; for example, {@code "1200.0"}.
+ * <li>Subcase <i>i</i> ≥ <i>k</i> + 2:
+ * |<i>d</i>| is formatted as <i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>k</i>+1</sub> . <!--
+ * --><i>m</i><sub><i>k</i>+2</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>; for example, {@code
"1234.32"}.
+ * </ul>
+ * <li>Case <i>k</i> < -3 or <i>k</i> ≥ 7:
+ * computerized scientific notation is used to format |<i>d</i>|,
+ * by combining <i>m</i> and <i>k</i> separated by the exponent
+ * indicator '{@code E}'. The exponent <i>k</i> is formatted as in
+ * {@link Integer#toString(int)}.
+ * <ul>
+ * <li>Subcase <i>i</i> = 1: |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub> . 0E<i>k</i>;
+ * for example, {@code "2.0E23"}.
+ * <li>Subcase <i>i</i> > 1: |<i>d</i>| is formatted as
+ *
<i>m</i><sub>1</sub> . <i>m</i><sub>2</sub><!--
+ * -->…<i>m</i><sub><i>i</i></sub>E<i>k</i>;
+ * for example, {@code "1.234E-32"}.
+ * </ul>
+ * </ul>
*
- * <p>To create localized string representations of a floating-point
- * value, use subclasses of {@link java.text.NumberFormat}.
- *
- * @param d the {@code double} to be converted.
- * @return a string representation of the argument.
+ * @param v the {@code double} to be rendered.
+ * @return a string rendering of the argument.
*/
- public static String toString(double d) {
- return FloatingDecimal.toJavaFormatString(d);
+ public static String toString(double v) {
+ return DoubleToDecimal.toString(v);
}
/**
diff --git a/src/java.base/share/classes/java/lang/Float.java
b/src/java.base/share/classes/java/lang/Float.java
--- a/src/java.base/share/classes/java/lang/Float.java
+++ b/src/java.base/share/classes/java/lang/Float.java
@@ -25,6 +25,7 @@
package java.lang;
+import jdk.internal.math.FloatToDecimal;
import jdk.internal.math.FloatingDecimal;
import jdk.internal.HotSpotIntrinsicCandidate;
@@ -136,73 +137,107 @@
public static final Class<Float> TYPE = (Class<Float>)
Class.getPrimitiveClass("float");
/**
- * Returns a string representation of the {@code float}
- * argument. All characters mentioned below are ASCII characters.
+ * Returns a string rendering of the {@code float} argument.
+ *
+ * <p>The characters of the result are all drawn from the ASCII set.
* <ul>
- * <li>If the argument is NaN, the result is the string
- * "{@code NaN}".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is
- * negative, the first character of the result is
- * '{@code -}' ({@code '\u005Cu002D'}); if the sign is
- * positive, no sign character appears in the result. As for
- * the magnitude <i>m</i>:
+ * <li> Any NaN, whether quiet or signaling, is rendered
symbolically
+ * as {@code "NaN"}, regardless of the sign bit.
+ * <li> The infinities +∞ and -∞ are rendered as
+ * {@code "Infinity"} and {@code "-Infinity"}, respectively.
+ * <li> The positive and negative zeroes are rendered as
+ * {@code "0.0"} and {@code "-0.0"}, respectively.
+ * <li> Otherwise {@code v} is finite and non-zero.
+ * It is rendered in two stages:
+ * <ul>
+ * <li> <em>Selection of a decimal</em>: A well-specified
non-zero
+ * decimal <i>d</i> of finite length is selected to represent
+ * {@code v}.
+ * <li> <em>Formatting as a string</em>: The decimal
<i>d</i> is
+ * formatted as a string, either in plain or in computerized
+ * scientific notation, depending on its value.
+ * </ul>
+ * </ul>
+ *
+ * <p>A number <i>d</i> is a decimal of finite length if and only
if it has
+ * the form <i>d</i> = <i>c</i>·10<sup><i>q</i></sup> for some
+ * integers <i>c</i> and <i>q</i>. It has a length <i>n</i> if
+ * 10<sup><i>n</i>-1</sup> ≤ |<i>c</i>| < 10<sup><i>n</i></sup>.
+ * <p>The selected decimal <i>d</i> has all the following properties:
+ * <ul>
+ * <li> It rounds to {@code v} according to the usual
round-to-closest
+ * rule of IEEE 754 floating-point arithmetic.
+ * <li> It has a shortest length <i>n</i> ≥ 2.
+ * <li> It is the decimal closest to {@code v} among those
meeting the
+ * previous properties.
+ * </ul>
+ * More formally, let <i>d'</i> =
<i>c'</i>·10<sup><i>q'</i></sup>
+ * ≠ <i>d</i> be another decimal that also rounds to {@code v}
according
+ * to IEEE 754 and with a length <i>n'</i>. Then:
* <ul>
- * <li>If <i>m</i> is infinity, it is represented by the characters
- * {@code "Infinity"}; thus, positive infinity produces
- * the result {@code "Infinity"} and negative infinity
- * produces the result {@code "-Infinity"}.
- * <li>If <i>m</i> is zero, it is represented by the characters
- * {@code "0.0"}; thus, negative zero produces the result
- * {@code "-0.0"} and positive zero produces the result
- * {@code "0.0"}.
- * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
- * less than 10<sup>7</sup>, then it is represented as the
- * integer part of <i>m</i>, in decimal form with no leading
- * zeroes, followed by '{@code .}'
- * ({@code '\u005Cu002E'}), followed by one or more
- * decimal digits representing the fractional part of
- * <i>m</i>.
- * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
- * equal to 10<sup>7</sup>, then it is represented in
- * so-called "computerized scientific notation." Let <i>n</i>
- * be the unique integer such that 10<sup><i>n</i> </sup>≤
- * <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let
<i>a</i>
- * be the mathematically exact quotient of <i>m</i> and
- * 10<sup><i>n</i></sup> so that 1 ≤ <i>a</i> {@literal <} 10.
- * The magnitude is then represented as the integer part of
- * <i>a</i>, as a single decimal digit, followed by
- * '{@code .}' ({@code '\u005Cu002E'}), followed by
- * decimal digits representing the fractional part of
- * <i>a</i>, followed by the letter '{@code E}'
- * ({@code '\u005Cu0045'}), followed by a representation
- * of <i>n</i> as a decimal integer, as produced by the
- * method {@link java.lang.Integer#toString(int)}.
+ * <li> <i>n'</i> = 1 (<i>d'</i> is too short) or
+ * <li> <i>n'</i> > <i>n</i> (<i>d'</i> is too long) or
+ * <li> <i>n'</i> = <i>n</i> and
+ * <ul>
+ * <li> |<i>d</i> - {@code v}| < |<i>d'</i> - {@code v}|
+ * (<i>d'</i> is farther)
+ * <li> |<i>d</i> - {@code v}| = |<i>d'</i> - {@code v}| and
+ * <i>c</i> is even while <i>c'</i> is odd (tie-breaking
rule when
+ * <i>d</i> and <i>d'</i> are equally close to {@code v})
+ * </ul>
+ * </ul>
*
- * </ul>
- * </ul>
- * How many digits must be printed for the fractional part of
- * <i>m</i> or <i>a</i>? There must be at least one digit
- * to represent the fractional part, and beyond that as many, but
- * only as many, more digits as are needed to uniquely distinguish
- * the argument value from adjacent values of type
- * {@code float}. That is, suppose that <i>x</i> is the
- * exact mathematical value represented by the decimal
- * representation produced by this method for a finite nonzero
- * argument <i>f</i>. Then <i>f</i> must be the {@code float}
- * value nearest to <i>x</i>; or, if two {@code float} values are
- * equally close to <i>x</i>, then <i>f</i> must be one of
- * them and the least significant bit of the significand of
- * <i>f</i> must be {@code 0}.
+ * <p>The selected decimal <i>d</i> is then formatted as a string.
+ * If <i>d</i> < 0, the first character of the string is the sign
+ * '{@code -}'. Let |<i>d</i>| = <i>m</i>·10<sup><i>k</i></sup>,
+ * for the unique pair of integer <i>k</i> and real <i>m</i> meeting
+ * 1 ≤ <i>m</i> < 10. Also, let the decimal expansion of
<i>m</i> be
+ *
<i>m</i><sub>1</sub> . <i>m</i><sub>2</sub> <!--
+ * -->… <i>m</i><sub><i>i</i></sub>,
+ * with <i>i</i> ≥ 1 and <i>m</i><sub><i>i</i></sub> ≠ 0.
+ * <ul>
+ * <li>Case -3 ≤ k < 0: |<i>d</i>| is formatted as
+ * 0 . 0…0<i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>,
+ * where there are exactly -<i>k</i> leading zeroes before
+ * <i>m</i><sub>1</sub>, including the zero to the left of the
+ * decimal point; for example, {@code "0.01234"}.
+ * <li>Case 0 ≤ <i>k</i> < 7:
+ * <ul>
+ * <li>Subcase <i>i</i> < <i>k</i> + 2:
+ * |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>0…0 . 0,
+ * where there are exactly <i>k</i> + 2 - <i>i</i> trailing
zeroes
+ * after <i>m</i><sub><i>i</i></sub>, including the zero to the
+ * right of the decimal point; for example, {@code "1200.0"}.
+ * <li>Subcase <i>i</i> ≥ <i>k</i> + 2:
+ * |<i>d</i>| is formatted as <i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>k</i>+1</sub> . <!--
+ * --><i>m</i><sub><i>k</i>+2</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>; for example, {@code
"1234.32"}.
+ * </ul>
+ * <li>Case <i>k</i> < -3 or <i>k</i> ≥ 7:
+ * computerized scientific notation is used to format |<i>d</i>|,
+ * by combining <i>m</i> and <i>k</i> separated by the exponent
+ * indicator '{@code E}'. The exponent <i>k</i> is formatted as in
+ * {@link Integer#toString(int)}.
+ * <ul>
+ * <li>Subcase <i>i</i> = 1: |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub> . 0E<i>k</i>;
+ * for example, {@code "2.0E23"}.
+ * <li>Subcase <i>i</i> > 1: |<i>d</i>| is formatted as
+ *
<i>m</i><sub>1</sub> . <i>m</i><sub>2</sub><!--
+ * -->…<i>m</i><sub><i>i</i></sub>E<i>k</i>;
+ * for example, {@code "1.234E-32"}.
+ * </ul>
+ * </ul>
*
- * <p>To create localized string representations of a floating-point
- * value, use subclasses of {@link java.text.NumberFormat}.
- *
- * @param f the float to be converted.
- * @return a string representation of the argument.
+ * @param v the {@code float} to be rendered.
+ * @return a string rendering of the argument.
*/
- public static String toString(float f) {
- return FloatingDecimal.toJavaFormatString(f);
+ public static String toString(float v) {
+ return FloatToDecimal.toString(v);
}
/**
diff --git
a/src/java.base/share/classes/jdk/internal/math/DoubleToDecimal.java
b/src/java.base/share/classes/jdk/internal/math/DoubleToDecimal.java
new file mode 100644
--- /dev/null
+++ b/src/java.base/share/classes/jdk/internal/math/DoubleToDecimal.java
@@ -0,0 +1,409 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License
version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+package jdk.internal.math;
+
+import static java.lang.Double.*;
+import static java.lang.Long.numberOfLeadingZeros;
+import static java.lang.Math.multiplyHigh;
+import static jdk.internal.math.MathUtils.*;
+
+/**
+ * This class exposes a method to render a {@code double} as a string.
+
+ * @author Raffaello Giulietti
+ */
+final public class DoubleToDecimal {
+
+ // Precision of normal values in bits.
+ private static final int P = 53;
+
+ // Length in bits of the exponent field.
+ private static final int W = (Double.SIZE - 1) - (P - 1);
+
+ // Minimum value of the exponent.
+ private static final int Q_MIN = (-1 << W - 1) - P + 3;
+
+ // Minimum value of the coefficient of a normal value.
+ private static final long C_MIN = 1L << P - 1;
+
+ // Mask to extract the IEEE 754-2008 biased exponent.
+ private static final int BQ_MASK = (1 << W) - 1;
+
+ // Mask to extract the IEEE 754-2008 fraction bits.
+ private static final long T_MASK = (1L << P - 1) - 1;
+
+ // H = min {n integer | 10^(n-1) > 2^P}
+ private static final int H = 17;
+
+ // used in the left-to-right extraction of the digits
+ private static final int LTR = 28;
+ private static final int MASK_LTR = (1 << LTR) - 1;
+
+ private static final long MASK_63 = (1L << Long.SIZE - 1) - 1;
+
+ // for thread-safety, each thread gets its own instance of this class
+ private static final ThreadLocal<DoubleToDecimal> threadLocal =
+ ThreadLocal.withInitial(DoubleToDecimal::new);
+
+ /*
+ Room for the longer of the forms
+ -ddddd.dddddddddddd H + 2 characters
+ -0.00ddddddddddddddddd H + 5 characters
+ -d.ddddddddddddddddE-eee H + 7 characters
+ where there are H digits d
+ */
+ private final char[] buf = new char[H + 7];
+
+ // index of rightmost valid character
+ private int index;
+
+ private DoubleToDecimal() {
+ }
+
+ /*
+ See Double::toString for javadoc.
+ */
+ public static String toString(double v) {
+ return threadLocalInstance().toDecimal(v);
+ }
+
+ private static DoubleToDecimal threadLocalInstance() {
+ return threadLocal.get();
+ }
+
+ private String toDecimal(double v) {
+ long bits = doubleToRawLongBits(v);
+ int bq = (int) (bits >>> P - 1) & BQ_MASK;
+ if (bq < BQ_MASK) {
+ index = -1;
+ if (bits < 0) {
+ append('-');
+ }
+ if (bq > 0) {
+ return toDecimal(Q_MIN - 1 + bq, C_MIN | bits & T_MASK);
+ }
+ if (bits == 0x0000_0000_0000_0000L) {
+ return "0.0";
+ }
+ if (bits == 0x8000_0000_0000_0000L) {
+ return "-0.0";
+ }
+ return toDecimal(Q_MIN, bits & T_MASK);
+ }
+ if (v != v) {
+ return "NaN";
+ }
+ if (v == POSITIVE_INFINITY) {
+ return "Infinity";
+ }
+ return "-Infinity";
+ }
+
+ // Let v = c * 2^q be the absolute value of the original double.
Renders v.
+ private String toDecimal(int q, long c) {
+ /*
+ out = 0, if the boundaries of the rounding interval are included
+ out = 1, if they are excluded
+ d = 1 for even, d = 2 for uneven spacing around v.
+ v = cb * 2^qb
+ predecessor(v) = cbl * 2^qb
+ successor(v) = cbr * 2^qb
+ */
+ int out = (int) c & 0x1;
+
+ long cb;
+ long cbr;
+ long cbl;
+ int k;
+ int ord2alpha;
+ if (c != C_MIN | q == Q_MIN) {
+ cb = c << 1;
+ cbr = cb + 1;
+ k = flog10pow2(q);
+ ord2alpha = q + flog2pow10(-k) + 1;
+ } else {
+ cb = c << 2;
+ cbr = cb + 2;
+ k = flog10threeQuartersPow2(q);
+ ord2alpha = q + flog2pow10(-k);
+ }
+ cbl = cb - 1;
+ long mask = (1L << 63 - ord2alpha) - 1;
+ long threshold = 1L << 62 - ord2alpha;
+
+ // pow5 = pow51*2^63 + pow50
+ long pow51 = ceilPow5dHigh(-k);
+ long pow50 = ceilPow5dLow(-k);
+
+ // p = p2*2^126 + p1*2^63 + p0 and p = pow5 * cb
+ long x0 = pow50 * cb;
+ long x1 = multiplyHigh(pow50, cb);
+ long y0 = pow51 * cb;
+ long y1 = multiplyHigh(pow51, cb);
+ long z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ long p0 = x0 & MASK_63;
+ long p1 = z & MASK_63;
+ long p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vn = p2 << 1 + ord2alpha | p1 >>> 62 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vn |= 1;
+ }
+
+ // Similarly as above, with p = pow5 * cbl
+ x0 = pow50 * cbl;
+ x1 = multiplyHigh(pow50, cbl);
+ y0 = pow51 * cbl;
+ y1 = multiplyHigh(pow51, cbl);
+ z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ p0 = x0 & MASK_63;
+ p1 = z & MASK_63;
+ p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vnl = p2 << ord2alpha | p1 >>> 63 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vnl |= 1;
+ }
+
+ // Similarly as above, with p = pow5 * cbr
+ x0 = pow50 * cbr;
+ x1 = multiplyHigh(pow50, cbr);
+ y0 = pow51 * cbr;
+ y1 = multiplyHigh(pow51, cbr);
+ z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ p0 = x0 & MASK_63;
+ p1 = z & MASK_63;
+ p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vnr = p2 << ord2alpha | p1 >>> 63 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vnr |= 1;
+ }
+
+ long s = vn >> 2;
+ if (s >= 100) {
+ long s10 = s - s % 10;
+ long t10 = s10 + 10;
+ boolean uin10 = vnl + out <= s10 << 1;
+ boolean win10 = (t10 << 1) + out <= vnr;
+ if (uin10 | win10) {
+ if (!win10) {
+ return toChars(s10, k);
+ }
+ if (!uin10) {
+ return toChars(t10, k);
+ }
+ }
+ } else if (s < 10) {
+ /*
+ Special cases that need to be made artificially longer to meet
+ the specification
+ */
+ switch ((int) s) {
+ case 4: return toChars(49, -325); // 4.9 * 10^-324
+ case 9: return toChars(99, -325); // 9.9 * 10^-324
+ }
+ }
+ long t = s + 1;
+ boolean uin = vnl + out <= s << 1;
+ boolean win = (t << 1) + out <= vnr;
+ if (!win) {
+ return toChars(s, k);
+ }
+ if (!uin) {
+ return toChars(t, k);
+ }
+ long cmp = vn - (s + t << 1);
+ if (cmp < 0) {
+ return toChars(s, k);
+ }
+ if (cmp > 0) {
+ return toChars(t, k);
+ }
+ if ((s & 1) == 0) {
+ return toChars(s, k);
+ }
+ return toChars(t, k);
+ }
+
+ /*
+ The method formats the number f * 10^e
+
+ Division is avoided altogether by replacing it with multiplications
+ and shifts. This has a noticeable impact on performance.
+ For more in-depth readings, see for example
+ * Moeller & Granlund, "Improved division by invariant integers"
+ * ridiculous_fish, "Labor of Division (Episode III): Faster Unsigned
+ Division by Constants"
+
+ Also, once the quotient is known, the remainder is computed indirectly.
+ */
+ private String toChars(long f, int e) {
+ // Normalize f to lie in the f-independent interval [10^(H-1),
10^H)
+ int len10 = flog10pow2(Long.SIZE - numberOfLeadingZeros(f));
+ if (f >= pow10[len10]) {
+ len10 += 1;
+ }
+ // 10^(len10-1) <= f < 10^len10
+ f *= pow10[H - len10];
+ e += len10;
+
+ /*
+ Split the H = 17 digits of f into:
+ h = the most significant digit of f
+ m = the next 8 most significant digits of f
+ l = the last 8, least significant digits of f
+
+ Pictorially, the selected decimal to format as String is
+ 0.hmmmmmmmmllllllll * 10^e
+ Depending on the value of e, plain or computerized scientific
notation
+ is used.
+ */
+ long hm = multiplyHigh(f, 48_357_032_784_585_167L) >>> 18;
+ int l = (int) (f - 100_000_000L * hm);
+ int h = (int) (hm * 1_441_151_881L >>> 57);
+ int m = (int) (hm - 100_000_000 * h);
+
+ /*
+ The left-to-right digits generation in toChars_* is inspired by
+ * Bouvier & Zimmermann, "Division-Free Binary-to-Decimal
Conversion"
+ */
+ if (0 < e && e <= 7) {
+ return toChars_1(h, m, l, e);
+ }
+ if (-3 < e && e <= 0) {
+ return toChars_2(h, m, l, e);
+ }
+ return toChars_3(h, m, l, e);
+ }
+
+ // 0 < e <= 7: plain format without leading zeroes.
+ private String toChars_1(int h, int m, int l, int e) {
+ appendDigit(h);
+ // y = (m + 1) * 2^LTR / 100_000_000 - 1;
+ int y = (int) (multiplyHigh(
+ (long) (m + 1) << LTR,
+ 48_357_032_784_585_167L) >>> 18) - 1;
+ int t;
+ int i = 1;
+ for (; i < e; ++i) {
+ t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ append('.');
+ for (; i <= 8; ++i) {
+ t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ lowDigits(l);
+ return charsToString();
+ }
+
+ // -3 < e <= 0: plain format with leading zeroes.
+ private String toChars_2(int h, int m, int l, int e) {
+ appendDigit(0);
+ append('.');
+ for (; e < 0; ++e) {
+ appendDigit(0);
+ }
+ appendDigit(h);
+ append8Digits(m);
+ lowDigits(l);
+ return charsToString();
+ }
+
+ // -3 >= e | e > 7: computerized scientific notation
+ private String toChars_3(int h, int m, int l, int e) {
+ appendDigit(h);
+ append('.');
+ append8Digits(m);
+ lowDigits(l);
+ exponent(e - 1);
+ return charsToString();
+ }
+
+ private void lowDigits(int l) {
+ if (l != 0) {
+ append8Digits(l);
+ }
+ removeTrailingZeroes();
+ }
+
+ private void append8Digits(int v) {
+ // y = (v + 1) * 2^LTR / 100_000_000 - 1;
+ int y = (int) (multiplyHigh((long) (v + 1) << LTR,
+ 48_357_032_784_585_167L) >>> 18) - 1;
+ for (int i = 0; i < 8; ++i) {
+ int t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ }
+
+ private void removeTrailingZeroes() {
+ while (buf[index] == '0') {
+ --index;
+ }
+ if (buf[index] == '.') {
+ ++index;
+ }
+ }
+
+ private void exponent(int e) {
+ append('E');
+ if (e < 0) {
+ append('-');
+ e = -e;
+ }
+ if (e < 10) {
+ appendDigit(e);
+ return;
+ }
+ if (e < 100) {
+ // d = e / 10
+ int d = e * 205 >>> 11;
+ appendDigit(d);
+ appendDigit(e - 10 * d);
+ return;
+ }
+ // d = e / 100
+ int d = e * 1_311 >>> 17;
+ appendDigit(d);
+ e -= 100 * d;
+ // d = e / 10
+ d = e * 205 >>> 11;
+ appendDigit(d);
+ appendDigit(e - 10 * d);
+ }
+
+ private void append(int c) {
+ buf[++index] = (char) c;
+ }
+
+ private void appendDigit(int d) {
+ buf[++index] = (char) ('0' + d);
+ }
+
+ private String charsToString() {
+ return new String(buf, 0, index + 1);
+ }
+
+}
diff --git
a/src/java.base/share/classes/jdk/internal/math/FloatToDecimal.java
b/src/java.base/share/classes/jdk/internal/math/FloatToDecimal.java
new file mode 100644
--- /dev/null
+++ b/src/java.base/share/classes/jdk/internal/math/FloatToDecimal.java
@@ -0,0 +1,393 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License
version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+package jdk.internal.math;
+
+import static java.lang.Float.*;
+import static java.lang.Long.numberOfLeadingZeros;
+import static java.lang.Math.multiplyHigh;
+import static jdk.internal.math.MathUtils.*;
+
+/**
+ * This class exposes a method to render a {@code float} as a string.
+
+ * @author Raffaello Giulietti
+ */
+final public class FloatToDecimal {
+
+ // Precision of normal values in bits.
+ private static final int P = 24;
+
+ // Length in bits of the exponent field.
+ private static final int W = (Float.SIZE - 1) - (P - 1);
+
+ // Minimum value of the exponent.
+ private static final int Q_MIN = (-1 << W - 1) - P + 3;
+
+ // Minimum value of the coefficient of a normal value.
+ private static final int C_MIN = 1 << P - 1;
+
+ // Mask to extract the IEEE 754-2008 biased exponent.
+ private static final int BQ_MASK = (1 << W) - 1;
+
+ // Mask to extract the IEEE 754-2008 fraction bits.
+ private static final int T_MASK = (1 << P - 1) - 1;
+
+ // H = min {n integer | 10^(n-1) > 2^P}
+ private static final int H = 9;
+
+ // used in the left-to-right extraction of the digits
+ private static final int LTR = 28;
+ private static final int MASK_LTR = (1 << LTR) - 1;
+
+ private static final long MASK_63 = (1L << Long.SIZE - 1) - 1;
+
+ // for thread-safety, each thread gets its own instance of this class
+ private static final ThreadLocal<FloatToDecimal> threadLocal =
+ ThreadLocal.withInitial(FloatToDecimal::new);
+
+ /*
+ Room for the longer of the forms
+ -ddddd.dddd H + 2 characters
+ -0.00ddddddddd H + 5 characters
+ -d.ddddddddE-ee H + 6 characters
+ where there are H digits d
+ */
+ private final char[] buf = new char[H + 6];
+
+ // index of rightmost valid character
+ private int index;
+
+ private FloatToDecimal() {
+ }
+
+ /*
+ See Float::toString for javadoc.
+ */
+ public static String toString(float v) {
+ return threadLocalInstance().toDecimal(v);
+ }
+
+ private static FloatToDecimal threadLocalInstance() {
+ return threadLocal.get();
+ }
+
+ private String toDecimal(float v) {
+ int bits = floatToRawIntBits(v);
+ int bq = (bits >>> P - 1) & BQ_MASK;
+ if (bq < BQ_MASK) {
+ index = -1;
+ if (bits < 0) {
+ append('-');
+ }
+ if (bq > 0) {
+ return toDecimal(Q_MIN - 1 + bq, C_MIN | bits & T_MASK);
+ }
+ if (bits == 0x0000_0000) {
+ return "0.0";
+ }
+ if (bits == 0x8000_0000) {
+ return "-0.0";
+ }
+ return toDecimal(Q_MIN, bits & T_MASK);
+ }
+ if (v != v) {
+ return "NaN";
+ }
+ if (v == POSITIVE_INFINITY) {
+ return "Infinity";
+ }
+ return "-Infinity";
+ }
+
+ // Let v = c * 2^q be the absolute value of the original float.
Renders v.
+ private String toDecimal(int q, int c) {
+ /*
+ out = 0, if the boundaries of the rounding interval are included
+ out = 1, if they are excluded
+ d = 1 for even, d = 2 for uneven spacing around v.
+ v = cb * 2^qb
+ predecessor(v) = cbl * 2^qb
+ successor(v) = cbr * 2^qb
+ */
+ int out = c & 0x1;
+
+ long cb;
+ long cbr;
+ long cbl;
+ int k;
+ int ord2alpha;
+ if (c != C_MIN | q == Q_MIN) {
+ cb = c << 1;
+ cbr = cb + 1;
+ k = flog10pow2(q);
+ ord2alpha = q + flog2pow10(-k) + 1;
+ } else {
+ cb = c << 2;
+ cbr = cb + 2;
+ k = flog10threeQuartersPow2(q);
+ ord2alpha = q + flog2pow10(-k);
+ }
+ cbl = cb - 1;
+ long mask = (1L << 63 - ord2alpha) - 1;
+ long threshold = 1L << 62 - ord2alpha;
+
+ // pow5 = pow51*2^63 + pow50
+ long pow51 = ceilPow5dHigh(-k);
+ long pow50 = ceilPow5dLow(-k);
+
+ // p = p2*2^126 + p1*2^63 + p0 and p = pow5 * cb
+ long x0 = pow50 * cb;
+ long x1 = multiplyHigh(pow50, cb);
+ long y0 = pow51 * cb;
+ long y1 = multiplyHigh(pow51, cb);
+ long z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ long p0 = x0 & MASK_63;
+ long p1 = z & MASK_63;
+ long p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vn = p2 << 1 + ord2alpha | p1 >>> 62 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vn |= 1;
+ }
+
+ // Similarly as above, with p = pow5 * cbl
+ x0 = pow50 * cbl;
+ x1 = multiplyHigh(pow50, cbl);
+ y0 = pow51 * cbl;
+ y1 = multiplyHigh(pow51, cbl);
+ z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ p0 = x0 & MASK_63;
+ p1 = z & MASK_63;
+ p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vnl = p2 << ord2alpha | p1 >>> 63 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vnl |= 1;
+ }
+
+ // Similarly as above, with p = pow5 * cbr
+ x0 = pow50 * cbr;
+ x1 = multiplyHigh(pow50, cbr);
+ y0 = pow51 * cbr;
+ y1 = multiplyHigh(pow51, cbr);
+ z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ p0 = x0 & MASK_63;
+ p1 = z & MASK_63;
+ p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vnr = p2 << ord2alpha | p1 >>> 63 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vnr |= 1;
+ }
+
+ long s = vn >> 2;
+ if (s >= 100) {
+ long s10 = s - s % 10;
+ long t10 = s10 + 10;
+ boolean uin10 = vnl + out <= s10 << 1;
+ boolean win10 = (t10 << 1) + out <= vnr;
+ if (uin10 | win10) {
+ if (!win10) {
+ return toChars(s10, k);
+ }
+ if (!uin10) {
+ return toChars(t10, k);
+ }
+ }
+ } else if (s < 10) {
+ /*
+ Special cases that need to be made artificially longer to meet
+ the specification
+ */
+ switch ((int) s) {
+ case 1: return toChars(14, -46); // 1.4 * 10^-45
+ case 2: return toChars(28, -46); // 2.8 * 10^-45
+ case 4: return toChars(42, -46); // 4.2 * 10^-45
+ case 5: return toChars(56, -46); // 5.6 * 10^-45
+ case 7: return toChars(70, -46); // 7.0 * 10^-45
+ case 8: return toChars(84, -46); // 8.4 * 10^-45
+ case 9: return toChars(98, -46); // 9.8 * 10^-45
+ }
+ }
+ long t = s + 1;
+ boolean uin = vnl + out <= s << 1;
+ boolean win = (t << 1) + out <= vnr;
+ if (!win) {
+ return toChars(s, k);
+ }
+ if (!uin) {
+ return toChars(t, k);
+ }
+ long cmp = vn - (s + t << 1);
+ if (cmp < 0) {
+ return toChars(s, k);
+ }
+ if (cmp > 0) {
+ return toChars(t, k);
+ }
+ if ((s & 1) == 0) {
+ return toChars(s, k);
+ }
+ return toChars(t, k);
+ }
+
+ /*
+ The method formats the number f * 10^e
+
+ Division is avoided altogether by replacing it with multiplications
+ and shifts. This has a noticeable impact on performance.
+ For more in-depth readings, see for example
+ * Moeller & Granlund, "Improved division by invariant integers"
+ * ridiculous_fish, "Labor of Division (Episode III): Faster Unsigned
+ Division by Constants"
+
+ Also, once the quotient is known, the remainder is computed indirectly.
+ */
+ private String toChars(long f, int e) {
+ // Normalize f to lie in the f-independent interval [10^(H-1),
10^H)
+ int len10 = flog10pow2(Long.SIZE - numberOfLeadingZeros(f));
+ if (f >= pow10[len10]) {
+ len10 += 1;
+ }
+ // 10^(len10-1) <= f < 10^len10
+ f *= pow10[H - len10];
+ e += len10;
+
+ /*
+ Split the H = 9 digits of f into:
+ h = the most significant digit of f
+ l = the last 8, least significant digits of f
+
+ Pictorially, the selected decimal to format as String is
+ 0.hllllllll * 10^e
+ Depending on the value of e, plain or computerized scientific
notation
+ is used.
+ */
+ int h = (int) (f * 1_441_151_881L >>> 57);
+ int l = (int) (f - 100_000_000 * h);
+
+ /*
+ The left-to-right digits generation in toChars_* is inspired by
+ * Bouvier & Zimmermann, "Division-Free Binary-to-Decimal
Conversion"
+ */
+ if (0 < e && e <= 7) {
+ return toChars_1(h, l, e);
+ }
+ if (-3 < e && e <= 0) {
+ return toChars_2(h, l, e);
+ }
+ return toChars_3(h, l, e);
+ }
+
+ // 0 < e <= 7: plain format without leading zeroes.
+ private String toChars_1(int h, int l, int e) {
+ appendDigit(h);
+ // y = (l + 1) * 2^LTR / 100_000_000 - 1;
+ int y = (int) (multiplyHigh(
+ (long) (l + 1) << LTR,
+ 48_357_032_784_585_167L) >>> 18) - 1;
+ int t;
+ int i = 1;
+ for (; i < e; ++i) {
+ t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ append('.');
+ for (; i <= 8; ++i) {
+ t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ removeTrailingZeroes();
+ return charsToString();
+ }
+
+ // -3 < e <= 0: plain format with leading zeroes.
+ private String toChars_2(int h, int l, int e) {
+ appendDigit(0);
+ append('.');
+ for (; e < 0; ++e) {
+ appendDigit(0);
+ }
+ appendDigit(h);
+ append8Digits(l);
+ removeTrailingZeroes();
+ return charsToString();
+ }
+
+ // -3 >= e | e > 7: computerized scientific notation
+ private String toChars_3(int h, int l, int e) {
+ appendDigit(h);
+ append('.');
+ append8Digits(l);
+ removeTrailingZeroes();
+ exponent(e - 1);
+ return charsToString();
+ }
+
+ private void append8Digits(int v) {
+ // y = (v + 1) * 2^LTR / 100_000_000 - 1;
+ int y = (int) (multiplyHigh((long) (v + 1) << LTR,
+ 48_357_032_784_585_167L) >>> 18) - 1;
+ for (int i = 0; i < 8; ++i) {
+ int t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ }
+
+ private void removeTrailingZeroes() {
+ while (buf[index] == '0') {
+ --index;
+ }
+ if (buf[index] == '.') {
+ ++index;
+ }
+ }
+
+ private void exponent(int e) {
+ append('E');
+ if (e < 0) {
+ append('-');
+ e = -e;
+ }
+ if (e < 10) {
+ appendDigit(e);
+ return;
+ }
+ // d = e / 10
+ int d = e * 205 >>> 11;
+ appendDigit(d);
+ appendDigit(e - 10 * d);
+ }
+
+ private void append(int c) {
+ buf[++index] = (char) c;
+ }
+
+ private void appendDigit(int d) {
+ buf[++index] = (char) ('0' + d);
+ }
+
+ private String charsToString() {
+ return new String(buf, 0, index + 1);
+ }
+
+}
diff --git
a/src/java.base/share/classes/jdk/internal/math/MathUtils.java
b/src/java.base/share/classes/jdk/internal/math/MathUtils.java
new file mode 100644
--- /dev/null
+++ b/src/java.base/share/classes/jdk/internal/math/MathUtils.java
@@ -0,0 +1,775 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License
version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+package jdk.internal.math;
+
+/**
+ * @author Raffaello Giulietti
+ */
+final class MathUtils {
+
+ // C_10 = floor(log10(2) * 2^Q_10), A_10 = floor(log10(3/4) * 2^Q_10)
+ private static final int Q_10 = 41;
+ private static final long C_10 = 661_971_961_083L;
+ private static final long A_10 = -274_743_187_321L;
+
+ // C_2 = floor(log2(10) * 2^Q_2)
+ private static final int Q_2 = 38;
+ private static final long C_2 = 913_124_641_741L;
+
+ // The minimum exponent for ceilPow5dHigh(int)
+ private static final int MIN_EXP = -292;
+
+ private MathUtils() {
+ }
+
+ // pow10[i] = 10^i, 0 <= i <= H
+ static final long[] pow10 = {
+ 1L,
+ 10L,
+ 100L,
+ 1_000L,
+ 10_000L,
+ 100_000L,
+ 1_000_000L,
+ 10_000_000L,
+ 100_000_000L,
+ 1_000_000_000L,
+ 10_000_000_000L,
+ 100_000_000_000L,
+ 1_000_000_000_000L,
+ 10_000_000_000_000L,
+ 100_000_000_000_000L,
+ 1_000_000_000_000_000L,
+ 10_000_000_000_000_000L,
+ 100_000_000_000_000_000L,
+ };
+
+ /**
+ * Returns the unique integer <i>k</i> such that
+ * 10<sup><i>k</i></sup> ≤ 2<sup>{@code e}</sup>
+ * < 10<sup><i>k</i>+1</sup>.
+ * <p>
+ * The result is correct when |{@code e}| ≤ 5_456_721.
+ * Otherwise the result may or may not be correct.
+ *
+ * @param e The exponent of 2, which should meet
+ * |{@code e}| ≤ 5_456_721 for safe results.
+ * @return ⌊log<sub>10</sub>2<sup>{@code e}</sup>⌋.
+ */
+ static int flog10pow2(int e) {
+ return (int) (e * C_10 >> Q_10);
+ }
+
+ /**
+ * Returns the unique integer <i>k</i> such that
+ * 10<sup><i>k</i></sup> ≤ 3/4 · 2<sup>{@code e}</sup>
+ * < 10<sup><i>k</i>+1</sup>.
+ * <p>
+ * The result is correct when
+ * -2_956_395 ≤ |{@code e}| ≤ 2_500_325.
+ * Otherwise the result may or may not be correct.
+ *
+ * @param e The exponent of 2, which should meet
+ * -2_956_395 ≤ |{@code e}| ≤ 2_500_325 for safe
results.
+ * @return ⌊log<sub>10</sub>(3/4 ·
+ * 2<sup>{@code e}</sup>)⌋.
+ */
+ static int flog10threeQuartersPow2(int e) {
+ return (int) ((e * C_10 + A_10) >> Q_10);
+ }
+
+ /**
+ * Returns the unique integer <i>k</i> such that
+ * 2<sup><i>k</i></sup> ≤ 10<sup>{@code e}</sup>
+ * < 2<sup><i>k</i>+1</sup>.
+ * <p>
+ * The result is correct when |{@code e}| ≤ 1_838_394.
+ * Otherwise the result may or may not be correct.
+ *
+ * @param e The exponent of 10, which should meet
+ * |{@code e}| ≤ 1_838_394 for safe results.
+ * @return ⌊log<sub>2</sub>10<sup>{@code e}</sup>⌋.
+ */
+ static int flog2pow10(int e) {
+ return (int) (e * C_2 >> Q_2);
+ }
+
+ /**
+ * Let 5<sup>{@code e}</sup> = <i>d</i> · 2<sup><i>r</i></sup>,
+ * for the unique pair of integer <i>r</i> and real <i>d</i> meeting
+ * 2<sup>125</sup> ≤ d < 2<sup>126</sup>.
+ * Further, let <i>c</i> = ⌈<i>d</i>⌉.
+ * Split <i>c</i> into the higher 63 bits <i>c</i><sub>1</sub> and
+ * the lower 63 bits <i>c</i><sub>0</sub>. Thus,
+ * <i>c</i><sub>1</sub> =
+ * ⌊<i>c</i> · 2<sup>-63</sup>⌋
+ * and
+ * <i>c</i><sub>0</sub> =
+ * <i>c</i> - <i>c</i><sub>1</sub> · 2<sup>63</sup>.
+ * <p>
+ * This method returns <i>c</i><sub>1</sub> while
+ * {@link #ceilPow5dLow(int)} returns <i>c</i><sub>0</sub>.
+ * <p>
+ * If needed, the exponent <i>r</i> can be computed as
+ * <i>r</i> = {@code flog2pow10(e) - e - 125}
+ * (see {@link #flog2pow10(int)}).
+ *
+ * @param e The exponent of 5,
+ * which must meet -292 ≤ {@code e} ≤ 324.
+ * @return <i>c</i><sub>1</sub> as described above.
+ */
+ static long ceilPow5dHigh(int e) {
+ return ceilPow5d[e - MIN_EXP << 1];
+ }
+
+ /**
+ * Returns <i>c</i><sub>0</sub> as described in {@link
#ceilPow5dHigh(int)}.
+ *
+ * @param e The exponent of 5,
+ * which must meet -292 ≤ {@code e} ≤ 324.
+ * @return <i>c</i><sub>0</sub> as described in {@link
#ceilPow5dHigh(int)}.
+ */
+ static long ceilPow5dLow(int e) {
+ return ceilPow5d[e - MIN_EXP << 1 | 1];
+ }
+
+ private static final long[] ceilPow5d = {
+ /* -292 */ 0x7FBB_D8FE_5F5E_6E27L, 0x497A_3A27_04EE_C3DFL,
+ /* -291 */ 0x4FD5_679E_FB9B_04D8L, 0x5DEC_6458_6315_3A6CL,
+ /* -290 */ 0x63CA_C186_BA81_C60EL, 0x7567_7D6E_7BDA_8906L,
+ /* -289 */ 0x7CBD_71E8_6922_3792L, 0x52C1_5CCA_1AD1_2B48L,
+ /* -288 */ 0x4DF6_6731_41B5_62BBL, 0x53B8_D9FE_50C2_BB0DL,
+ /* -287 */ 0x6174_00FD_9222_BB6AL, 0x48A7_107D_E4F3_69D0L,
+ /* -286 */ 0x79D1_013C_F6AB_6A45L, 0x1AD0_D49D_5E30_4444L,
+ /* -285 */ 0x4C22_A0C6_1A2B_226BL, 0x20C2_84E2_5ADE_2AABL,
+ /* -284 */ 0x5F2B_48F7_A0B5_EB06L, 0x08F3_261A_F195_B555L,
+ /* -283 */ 0x76F6_1B35_88E3_65C7L, 0x4B2F_EFA1_ADFB_22ABL,
+ /* -282 */ 0x4A59_D101_758E_1F9CL, 0x5EFD_F5C5_0CBC_F5ABL,
+ /* -281 */ 0x5CF0_4541_D2F1_A783L, 0x76BD_7336_4FEC_3315L,
+ /* -280 */ 0x742C_5692_47AE_1164L, 0x746C_D003_E3E7_3FDBL,
+ /* -279 */ 0x489B_B61B_6CCC_CADFL, 0x08C4_0202_6E70_87E9L,
+ /* -278 */ 0x5AC2_A3A2_47FF_FD96L, 0x6AF5_0283_0A0C_A9E3L,
+ /* -277 */ 0x7173_4C8A_D9FF_FCFCL, 0x45B2_4323_CC8F_D45CL,
+ /* -276 */ 0x46E8_0FD6_C83F_FE1DL, 0x6B8F_69F6_5FD9_E4B9L,
+ /* -275 */ 0x58A2_13CC_7A4F_FDA5L, 0x2673_4473_F7D0_5DE8L,
+ /* -274 */ 0x6ECA_98BF_98E3_FD0EL, 0x5010_1590_F5C4_7561L,
+ /* -273 */ 0x453E_9F77_BF8E_7E29L, 0x120A_0D7A_999A_C95DL,
+ /* -272 */ 0x568E_4755_AF72_1DB3L, 0x368C_90D9_4001_7BB4L,
+ /* -271 */ 0x6C31_D92B_1B4E_A520L, 0x242F_B50F_9001_DAA1L,
+ /* -270 */ 0x439F_27BA_F111_2734L, 0x169D_D129_BA01_28A5L,
+ /* -269 */ 0x5486_F1A9_AD55_7101L, 0x1C45_4574_2881_72CEL,
+ /* -268 */ 0x69A8_AE14_18AA_CD41L, 0x4356_96D1_32A1_CF81L,
+ /* -267 */ 0x4209_6CCC_8F6A_C048L, 0x7A16_1E42_BFA5_21B1L,
+ /* -266 */ 0x528B_C7FF_B345_705BL, 0x189B_A5D3_6F8E_6A1DL,
+ /* -265 */ 0x672E_B9FF_A016_CC71L, 0x7EC2_8F48_4B72_04A4L,
+ /* -264 */ 0x407D_343F_C40E_3FC7L, 0x1F39_998D_2F27_42E7L,
+ /* -263 */ 0x509C_814F_B511_CFB9L, 0x0707_FFF0_7AF1_13A1L,
+ /* -262 */ 0x64C3_A1A3_A256_43A7L, 0x28C9_FFEC_99AD_5889L,
+ /* -261 */ 0x7DF4_8A0C_8AEB_D491L, 0x12FC_7FE7_C018_AEABL,
+ /* -260 */ 0x4EB8_D647_D6D3_64DAL, 0x5BDD_CFF0_D80F_6D2BL,
+ /* -259 */ 0x6267_0BD9_CC88_3E11L, 0x32D5_43ED_0E13_4875L,
+ /* -258 */ 0x7B00_CED0_3FAA_4D95L, 0x5F8A_94E8_5198_1A93L,
+ /* -257 */ 0x4CE0_8142_27CA_707DL, 0x4BB6_9D11_32FF_109CL,
+ /* -256 */ 0x6018_A192_B1BD_0C9CL, 0x7EA4_4455_7FBE_D4C3L,
+ /* -255 */ 0x781E_C9F7_5E2C_4FC4L, 0x1E4D_556A_DFAE_89F3L,
+ /* -254 */ 0x4B13_3E3A_9ADB_B1DAL, 0x52F0_5562_CBCD_1638L,
+ /* -253 */ 0x5DD8_0DC9_4192_9E51L, 0x27AC_6ABB_7EC0_5BC6L,
+ /* -252 */ 0x754E_113B_91F7_45E5L, 0x5197_856A_5E70_72B8L,
+ /* -251 */ 0x4950_CAC5_3B3A_8BAFL, 0x42FE_B362_7B06_47B3L,
+ /* -250 */ 0x5BA4_FD76_8A09_2E9BL, 0x33BE_603B_19C7_D99FL,
+ /* -249 */ 0x728E_3CD4_2C8B_7A42L, 0x20AD_F849_E039_D007L,
+ /* -248 */ 0x4798_E604_9BD7_2C69L, 0x346C_BB2E_2C24_2205L,
+ /* -247 */ 0x597F_1F85_C2CC_F783L, 0x6187_E9F9_B72D_2A86L,
+ /* -246 */ 0x6FDE_E767_3380_3564L, 0x59E9_E478_24F8_7527L,
+ /* -245 */ 0x45EB_50A0_8030_215EL, 0x7832_2ECB_171B_4939L,
+ /* -244 */ 0x5766_24C8_A03C_29B6L, 0x563E_BA7D_DCE2_1B87L,
+ /* -243 */ 0x6D3F_ADFA_C84B_3424L, 0x2BCE_691D_541A_A268L,
+ /* -242 */ 0x4447_CCBC_BD2F_0096L, 0x5B61_01B2_5490_A581L,
+ /* -241 */ 0x5559_BFEB_EC7A_C0BCL, 0x3239_421E_E9B4_CEE1L,
+ /* -240 */ 0x6AB0_2FE6_E799_70EBL, 0x3EC7_92A6_A422_029AL,
+ /* -239 */ 0x42AE_1DF0_50BF_E693L, 0x173C_BBA8_2695_41A0L,
+ /* -238 */ 0x5359_A56C_64EF_E037L, 0x7D0B_EA92_303A_9208L,
+ /* -237 */ 0x6830_0EC7_7E2B_D845L, 0x7C4E_E536_BC49_368AL,
+ /* -236 */ 0x411E_093C_AEDB_672BL, 0x5DB1_4F42_35AD_C217L,
+ /* -235 */ 0x5165_8B8B_DA92_40F6L, 0x551D_A312_C319_329CL,
+ /* -234 */ 0x65BE_EE6E_D136_D134L, 0x2A65_0BD7_73DF_7F43L,
+ /* -233 */ 0x7F2E_AA0A_8584_8581L, 0x34FE_4ECD_50D7_5F14L,
+ /* -232 */ 0x4F7D_2A46_9372_D370L, 0x711E_F140_5286_9B6CL,
+ /* -231 */ 0x635C_74D8_384F_884DL, 0x0D66_AD90_6728_4247L,
+ /* -230 */ 0x7C33_920E_4663_6A60L, 0x30C0_58F4_80F2_52D9L,
+ /* -229 */ 0x4DA0_3B48_EBFE_227CL, 0x1E78_3798_D097_73C8L,
+ /* -228 */ 0x6108_4A1B_26FD_AB1BL, 0x2616_457F_04BD_50BAL,
+ /* -227 */ 0x794A_5CA1_F0BD_15E2L, 0x0F9B_D6DE_C5EC_A4E8L,
+ /* -226 */ 0x4BCE_79E5_3676_2DADL, 0x29C1_664B_3BB3_E711L,
+ /* -225 */ 0x5EC2_185E_8413_B918L, 0x5431_BFDE_0AA0_E0D5L,
+ /* -224 */ 0x7672_9E76_2518_A75EL, 0x693E_2FD5_8D49_190BL,
+ /* -223 */ 0x4A07_A309_D72F_689BL, 0x21C6_DDE5_784D_AFA7L,
+ /* -222 */ 0x5C89_8BCC_4CFB_42C2L, 0x0A38_955E_D661_1B90L,
+ /* -221 */ 0x73AB_EEBF_603A_1372L, 0x4CC6_BAB6_8BF9_6274L,
+ /* -220 */ 0x484B_7537_9C24_4C27L, 0x4FFC_34B2_177B_DD89L,
+ /* -219 */ 0x5A5E_5285_832D_5F31L, 0x43FB_41DE_9D5A_D4EBL,
+ /* -218 */ 0x70F5_E726_E3F8_B6FDL, 0x74FA_1256_44B1_8A26L,
+ /* -217 */ 0x4699_B078_4E7B_725EL, 0x591C_4B75_EAEE_F658L,
+ /* -216 */ 0x5840_1C96_621A_4EF6L, 0x2F63_5E53_65AA_B3EDL,
+ /* -215 */ 0x6E50_23BB_FAA0_E2B3L, 0x7B3C_35E8_3F15_60E9L,
+ /* -214 */ 0x44F2_1655_7CA4_8DB0L, 0x3D05_A1B1_276D_5C92L,
+ /* -213 */ 0x562E_9BEA_DBCD_B11CL, 0x4C47_0A1D_7148_B3B6L,
+ /* -212 */ 0x6BBA_42E5_92C1_1D63L, 0x5F58_CCA4_CD9A_E0A3L,
+ /* -211 */ 0x4354_69CF_7BB8_B25EL, 0x2B97_7FE7_0080_CC66L,
+ /* -210 */ 0x5429_8443_5AA6_DEF5L, 0x767D_5FE0_C0A0_FF80L,
+ /* -209 */ 0x6933_E554_3150_96B3L, 0x341C_B7D8_F0C9_3F5FL,
+ /* -208 */ 0x41C0_6F54_9ED2_5E30L, 0x1091_F2E7_967D_C79CL,
+ /* -207 */ 0x5230_8B29_C686_F5BCL, 0x14B6_6FA1_7C1D_3983L,
+ /* -206 */ 0x66BC_ADF4_3828_B32BL, 0x19E4_0B89_DB24_87E3L,
+ /* -205 */ 0x4035_ECB8_A319_6FFBL, 0x002E_8736_28F6_D4EEL,
+ /* -204 */ 0x5043_67E6_CBDF_CBF9L, 0x603A_2903_B334_8A2AL,
+ /* -203 */ 0x6454_41E0_7ED7_BEF8L, 0x1848_B344_A001_ACB4L,
+ /* -202 */ 0x7D69_5258_9E8D_AEB6L, 0x1E5A_E015_C802_17E1L,
+ /* -201 */ 0x4E61_D377_6318_8D31L, 0x72F8_CC0D_9D01_4EEDL,
+ /* -200 */ 0x61FA_4855_3BDE_B07EL, 0x2FB6_FF11_0441_A2A8L,
+ /* -199 */ 0x7A78_DA6A_8AD6_5C9DL, 0x7BA4_BED5_4552_0B52L,
+ /* -198 */ 0x4C8B_8882_96C5_F9E2L, 0x5D46_F745_4B53_4713L,
+ /* -197 */ 0x5FAE_6AA3_3C77_785BL, 0x3498_B516_9E28_18D8L,
+ /* -196 */ 0x779A_054C_0B95_5672L, 0x21BE_E25C_45B2_1F0EL,
+ /* -195 */ 0x4AC0_434F_873D_5607L, 0x3517_4D79_AB8F_5369L,
+ /* -194 */ 0x5D70_5423_690C_AB89L, 0x225D_20D8_1673_2843L,
+ /* -193 */ 0x74CC_692C_434F_D66BL, 0x4AF4_690E_1C0F_F253L,
+ /* -192 */ 0x48FF_C1BB_AA11_E603L, 0x1ED8_C1A8_D189_F774L,
+ /* -191 */ 0x5B3F_B22A_9496_5F84L, 0x068E_F213_05EC_7551L,
+ /* -190 */ 0x720F_9EB5_39BB_F765L, 0x0832_AE97_C767_92A5L,
+ /* -189 */ 0x4749_C331_4415_7A9FL, 0x151F_AD1E_DCA0_BBA8L,
+ /* -188 */ 0x591C_33FD_951A_D946L, 0x7A67_9866_93C8_EA91L,
+ /* -187 */ 0x6F63_40FC_FA61_8F98L, 0x5901_7E80_38BB_2536L,
+ /* -186 */ 0x459E_089E_1C7C_F9BFL, 0x37A0_EF10_2374_F742L,
+ /* -185 */ 0x5705_8AC5_A39C_382FL, 0x2589_2AD4_2C52_3512L,
+ /* -184 */ 0x6CC6_ED77_0C83_463BL, 0x0EEB_7589_3766_C256L,
+ /* -183 */ 0x43FC_546A_67D2_0BE4L, 0x7953_2975_C2A0_3976L,
+ /* -182 */ 0x54FB_6985_01C6_8EDEL, 0x17A7_F3D3_3348_47D4L,
+ /* -181 */ 0x6A3A_43E6_4238_3295L, 0x5D91_F0C8_001A_59C8L,
+ /* -180 */ 0x4264_6A6F_E963_1F9DL, 0x4A7B_367D_0010_781DL,
+ /* -179 */ 0x52FD_850B_E3BB_E784L, 0x7D1A_041C_4014_9625L,
+ /* -178 */ 0x67BC_E64E_DCAA_E166L, 0x1C60_8523_5019_BBAEL,
+ /* -177 */ 0x40D6_0FF1_49EA_CCDFL, 0x71BC_5336_1210_154DL,
+ /* -176 */ 0x510B_93ED_9C65_8017L, 0x6E2B_6803_9694_1AA0L,
+ /* -175 */ 0x654E_78E9_037E_E01DL, 0x69B6_4204_7C39_2148L,
+ /* -174 */ 0x7EA2_1723_445E_9825L, 0x2423_D285_9B47_6999L,
+ /* -173 */ 0x4F25_4E76_0ABB_1F17L, 0x2696_6393_810C_A200L,
+ /* -172 */ 0x62EE_A213_8D69_E6DDL, 0x103B_FC78_614F_CA80L,
+ /* -171 */ 0x7BAA_4A98_70C4_6094L, 0x344A_FB96_79A3_BD20L,
+ /* -170 */ 0x4D4A_6E9F_467A_BC5CL, 0x60AE_DD3E_0C06_5634L,
+ /* -169 */ 0x609D_0A47_1819_6B73L, 0x78DA_948D_8F07_EBC1L,
+ /* -168 */ 0x78C4_4CD8_DE1F_C650L, 0x7711_39B0_F2C9_E6B1L,
+ /* -167 */ 0x4B7A_B007_8AD3_DBF2L, 0x4A6A_C40E_97BE_302FL,
+ /* -166 */ 0x5E59_5C09_6D88_D2EFL, 0x1D05_7512_3DAD_BC3AL,
+ /* -165 */ 0x75EF_B30B_C8EB_07ABL, 0x0446_D256_CD19_2B49L,
+ /* -164 */ 0x49B5_CFE7_5D92_E4CAL, 0x72AC_4376_402F_BB0EL,
+ /* -163 */ 0x5C23_43E1_34F7_9DFDL, 0x4F57_5453_D03B_A9D1L,
+ /* -162 */ 0x732C_14D9_8235_857DL, 0x032D_2968_C44A_9445L,
+ /* -161 */ 0x47FB_8D07_F161_736EL, 0x11FC_39E1_7AAE_9CABL,
+ /* -160 */ 0x59FA_7049_EDB9_D049L, 0x567B_4859_D95A_43D6L,
+ /* -159 */ 0x7079_0C5C_6928_445CL, 0x0C1A_1A70_4FB0_D4CCL,
+ /* -158 */ 0x464B_A7B9_C1B9_2AB9L, 0x4790_5086_31CE_84FFL,
+ /* -157 */ 0x57DE_91A8_3227_7567L, 0x7974_64A7_BE42_263FL,
+ /* -156 */ 0x6DD6_3612_3EB1_52C1L, 0x77D1_7DD1_ADD2_AFCFL,
+ /* -155 */ 0x44A5_E1CB_672E_D3B9L, 0x1AE2_EEA3_0CA3_ADE1L,
+ /* -154 */ 0x55CF_5A3E_40FA_88A7L, 0x419B_AA4B_CFCC_995AL,
+ /* -153 */ 0x6B43_30CD_D139_2AD1L, 0x3202_94DE_C3BF_BFB0L,
+ /* -152 */ 0x4309_FE80_A2C3_BAC2L, 0x6F41_9D0B_3A57_D7CEL,
+ /* -151 */ 0x53CC_7E20_CB74_A973L, 0x4B12_044E_08ED_CDC2L,
+ /* -150 */ 0x68BF_9DA8_FE51_D3D0L, 0x3DD6_8561_8B29_4132L,
+ /* -149 */ 0x4177_C289_9EF3_2462L, 0x26A6_135C_F6F9_C8BFL,
+ /* -148 */ 0x51D5_B32C_06AF_ED7AL, 0x704F_9834_34B8_3AEFL,
+ /* -147 */ 0x664B_1FF7_085B_E8D9L, 0x4C63_7E41_41E6_49ABL,
+ /* -146 */ 0x7FDD_E7F4_CA72_E30FL, 0x7F7C_5DD1_925F_DC15L,
+ /* -145 */ 0x4FEA_B0F8_FE87_CDE9L, 0x7FAD_BAA2_FB7B_E98DL,
+ /* -144 */ 0x63E5_5D37_3E29_C164L, 0x3F99_294B_BA5A_E3F1L,
+ /* -143 */ 0x7CDE_B485_0DB4_31BDL, 0x4F7F_739E_A8F1_9CEDL,
+ /* -142 */ 0x4E0B_30D3_2890_9F16L, 0x41AF_A843_2997_0214L,
+ /* -141 */ 0x618D_FD07_F2B4_C6DCL, 0x121B_9253_F3FC_C299L,
+ /* -140 */ 0x79F1_7C49_EF61_F893L, 0x16A2_76E8_F0FB_F33FL,
+ /* -139 */ 0x4C36_EDAE_359D_3B5BL, 0x7E25_8A51_969D_7808L,
+ /* -138 */ 0x5F44_A919_C304_8A32L, 0x7DAE_ECE5_FC44_D609L,
+ /* -137 */ 0x7715_D360_33C5_ACBFL, 0x5D1A_A81F_7B56_0B8CL,
+ /* -136 */ 0x4A6D_A41C_205B_8BF7L, 0x6A30_A913_AD15_C738L,
+ /* -135 */ 0x5D09_0D23_2872_6EF5L, 0x64BC_D358_985B_3905L,
+ /* -134 */ 0x744B_506B_F28F_0AB3L, 0x1DEC_082E_BE72_0746L,
+ /* -133 */ 0x48AF_1243_7799_66B0L, 0x02B3_851D_3707_448CL,
+ /* -132 */ 0x5ADA_D6D4_557F_C05CL, 0x0360_6664_84C9_15AFL,
+ /* -131 */ 0x7191_8C89_6ADF_B073L, 0x0438_7FFD_A5FB_5B1BL,
+ /* -130 */ 0x46FA_F7D5_E2CB_CE47L, 0x72A3_4FFE_87BD_18F1L,
+ /* -129 */ 0x58B9_B5CB_5B7E_C1D9L, 0x6F4C_23FE_29AC_5F2DL,
+ /* -128 */ 0x6EE8_233E_325E_7250L, 0x2B1F_2CFD_B417_76F8L,
+ /* -127 */ 0x4551_1606_DF7B_0772L, 0x1AF3_7C1E_908E_AA5BL,
+ /* -126 */ 0x56A5_5B88_9759_C94EL, 0x61B0_5B26_34B2_54F2L,
+ /* -125 */ 0x6C4E_B26A_BD30_3BA2L, 0x3A1C_71EF_C1DE_EA2EL,
+ /* -124 */ 0x43B1_2F82_B63E_2545L, 0x4451_C735_D92B_525DL,
+ /* -123 */ 0x549D_7B63_63CD_AE96L, 0x7566_3903_4F76_26F4L,
+ /* -122 */ 0x69C4_DA3C_3CC1_1A3CL, 0x52BF_C744_2353_B0B1L,
+ /* -121 */ 0x421B_0865_A5F8_B065L, 0x73B7_DC8A_9614_4E6FL,
+ /* -120 */ 0x52A1_CA7F_0F76_DC7FL, 0x30A5_D3AD_3B99_620BL,
+ /* -119 */ 0x674A_3D1E_D354_939FL, 0x1CCF_4898_8A7F_BA8DL,
+ /* -118 */ 0x408E_6633_4414_DC43L, 0x4201_8D5F_568F_D498L,
+ /* -117 */ 0x50B1_FFC0_151A_1354L, 0x3281_F0B7_2C33_C9BEL,
+ /* -116 */ 0x64DE_7FB0_1A60_9829L, 0x3F22_6CE4_F740_BC2EL,
+ /* -115 */ 0x7E16_1F9C_20F8_BE33L, 0x6EEB_081E_3510_EB39L,
+ /* -114 */ 0x4ECD_D3C1_949B_76E0L, 0x3552_E512_E12A_9304L,
+ /* -113 */ 0x6281_48B1_F9C2_5498L, 0x42A7_9E57_9975_37C5L,
+ /* -112 */ 0x7B21_9ADE_7832_E9BEL, 0x5351_85ED_7FD2_85B6L,
+ /* -111 */ 0x4CF5_00CB_0B1F_D217L, 0x1412_F3B4_6FE3_9392L,
+ /* -110 */ 0x6032_40FD_CDE7_C69CL, 0x7917_B0A1_8BDC_7876L,
+ /* -109 */ 0x783E_D13D_4161_B844L, 0x175D_9CC9_EED3_9694L,
+ /* -108 */ 0x4B27_42C6_48DD_132AL, 0x4E9A_81FE_3544_3E1CL,
+ /* -107 */ 0x5DF1_1377_DB14_57F5L, 0x2241_227D_C295_4DA3L,
+ /* -106 */ 0x756D_5855_D1D9_6DF2L, 0x4AD1_6B1D_333A_A10CL,
+ /* -105 */ 0x4964_5735_A327_E4B7L, 0x4EC2_E2F2_4004_A4A8L,
+ /* -104 */ 0x5BBD_6D03_0BF1_DDE5L, 0x4273_9BAE_D005_CDD2L,
+ /* -103 */ 0x72AC_C843_CEEE_555EL, 0x7310_829A_8407_4146L,
+ /* -102 */ 0x47AB_FD2A_6154_F55BL, 0x27EA_51A0_9284_88CCL,
+ /* -101 */ 0x5996_FC74_F9AA_32B2L, 0x11E4_E608_B725_AAFFL,
+ /* -100 */ 0x6FFC_BB92_3814_BF5EL, 0x565E_1F8A_E4EF_15BEL,
+ /* -99 */ 0x45FD_F53B_630C_F79BL, 0x15FA_D3B6_CF15_6D97L,
+ /* -98 */ 0x577D_728A_3BD0_3581L, 0x7B79_88A4_82DA_C8FDL,
+ /* -97 */ 0x6D5C_CF2C_CAC4_42E2L, 0x3A57_EACD_A391_7B3CL,
+ /* -96 */ 0x445A_017B_FEBA_A9CDL, 0x4476_F2C0_863A_ED06L,
+ /* -95 */ 0x5570_81DA_FE69_5440L, 0x7594_AF70_A7C9_A847L,
+ /* -94 */ 0x6ACC_A251_BE03_A951L, 0x12F9_DB4C_D1BC_1258L,
+ /* -93 */ 0x42BF_E573_16C2_49D2L, 0x5BDC_2910_0315_8B77L,
+ /* -92 */ 0x536F_DECF_DC72_DC47L, 0x32D3_3354_03DA_EE55L,
+ /* -91 */ 0x684B_D683_D38F_9359L, 0x1F88_0029_04D1_A9EAL,
+ /* -90 */ 0x412F_6612_6439_BC17L, 0x63B5_0019_A303_0A33L,
+ /* -89 */ 0x517B_3F96_FD48_2B1DL, 0x5CA2_4020_0BC3_CCBFL,
+ /* -88 */ 0x65DA_0F7C_BC9A_35E5L, 0x13CA_D028_0EB4_BFEFL,
+ /* -87 */ 0x7F50_935B_EBC0_C35EL, 0x38BD_8432_1261_EFEBL,
+ /* -86 */ 0x4F92_5C19_7358_7A1BL, 0x0376_729F_4B7D_35F3L,
+ /* -85 */ 0x6376_F31F_D02E_98A1L, 0x6454_0F47_1E5C_836FL,
+ /* -84 */ 0x7C54_AFE7_C43A_3ECAL, 0x1D69_1318_E5F3_A44BL,
+ /* -83 */ 0x4DB4_EDF0_DAA4_673EL, 0x3261_ABEF_8FB8_46AFL,
+ /* -82 */ 0x6122_296D_114D_810DL, 0x7EFA_16EB_73A6_585BL,
+ /* -81 */ 0x796A_B3C8_55A0_E151L, 0x3EB8_9CA6_508F_EE71L,
+ /* -80 */ 0x4BE2_B05D_3584_8CD2L, 0x7733_61E7_F259_F507L,
+ /* -79 */ 0x5EDB_5C74_82E5_B007L, 0x5500_3A61_EEF0_7249L,
+ /* -78 */ 0x7692_3391_A39F_1C09L, 0x4A40_48FA_6AAC_8EDBL,
+ /* -77 */ 0x4A1B_603B_0643_7185L, 0x7E68_2D9C_82AB_D949L,
+ /* -76 */ 0x5CA2_3849_C7D4_4DE7L, 0x3E02_3903_A356_CF9BL,
+ /* -75 */ 0x73CA_C65C_39C9_6161L, 0x2D82_C744_8C2C_8382L,
+ /* -74 */ 0x485E_BBF9_A41D_DCDCL, 0x6C71_BC8A_D79B_D231L,
+ /* -73 */ 0x5A76_6AF8_0D25_5414L, 0x078E_2BAD_8D82_C6BDL,
+ /* -72 */ 0x7114_05B6_106E_A919L, 0x0971_B698_F0E3_786DL,
+ /* -71 */ 0x46AC_8391_CA45_29AFL, 0x55E7_121F_968E_2B44L,
+ /* -70 */ 0x5857_A476_3CD6_741BL, 0x4B60_D6A7_7C31_B615L,
+ /* -69 */ 0x6E6D_8D93_CC0C_1122L, 0x3E39_0C51_5B3E_239AL,
+ /* -68 */ 0x4504_787C_5F87_8AB5L, 0x46E3_A7B2_D906_D640L,
+ /* -67 */ 0x5645_969B_7769_6D62L, 0x789C_919F_8F48_8BD0L,
+ /* -66 */ 0x6BD6_FC42_5543_C8BBL, 0x56C3_B607_731A_AEC4L,
+ /* -65 */ 0x4366_5DA9_754A_5D75L, 0x263A_51C4_A7F0_AD3BL,
+ /* -64 */ 0x543F_F513_D29C_F4D2L, 0x4FC8_E635_D1EC_D88AL,
+ /* -63 */ 0x694F_F258_C744_3207L, 0x23BB_1FC3_4668_0EACL,
+ /* -62 */ 0x41D1_F777_7C8A_9F44L, 0x4654_F3DA_0C01_092CL,
+ /* -61 */ 0x5246_7555_5BAD_4715L, 0x57EA_30D0_8F01_4B76L,
+ /* -60 */ 0x66D8_12AA_B298_98DBL, 0x0DE4_BD04_B2C1_9E54L,
+ /* -59 */ 0x4047_0BAA_AF9F_5F88L, 0x78AE_F622_EFB9_02F5L,
+ /* -58 */ 0x5058_CE95_5B87_376BL, 0x16DA_B3AB_ABA7_43B2L,
+ /* -57 */ 0x646F_023A_B269_0545L, 0x7C91_6096_9691_149EL,
+ /* -56 */ 0x7D8A_C2C9_5F03_4697L, 0x3BB5_B8BC_3C35_59C5L,
+ /* -55 */ 0x4E76_B9BD_DB62_0C1EL, 0x5551_9375_A5A1_581BL,
+ /* -54 */ 0x6214_682D_523A_8F26L, 0x2AA5_F853_0F09_AE22L,
+ /* -53 */ 0x7A99_8238_A6C9_32EFL, 0x754F_7667_D2CC_19ABL,
+ /* -52 */ 0x4C9F_F163_683D_BFD5L, 0x7951_AA00_E3BF_900BL,
+ /* -51 */ 0x5FC7_EDBC_424D_2FCBL, 0x37A6_1481_1CAF_740DL,
+ /* -50 */ 0x77B9_E92B_52E0_7BBEL, 0x258F_99A1_63DB_5111L,
+ /* -49 */ 0x4AD4_31BB_13CC_4D56L, 0x7779_C004_DE69_12ABL,
+ /* -48 */ 0x5D89_3E29_D8BF_60ACL, 0x5558_3006_1603_5755L,
+ /* -47 */ 0x74EB_8DB4_4EEF_38D7L, 0x6AAE_3C07_9B84_2D2AL,
+ /* -46 */ 0x4913_3890_B155_8386L, 0x72AC_E584_C132_9C3BL,
+ /* -45 */ 0x5B58_06B4_DDAA_E468L, 0x4F58_1EE5_F17F_4349L,
+ /* -44 */ 0x722E_0862_1515_9D82L, 0x632E_269F_6DDF_141BL,
+ /* -43 */ 0x475C_C53D_4D2D_8271L, 0x5DFC_D823_A4AB_6C91L,
+ /* -42 */ 0x5933_F68C_A078_E30EL, 0x157C_0E2C_8DD6_47B5L,
+ /* -41 */ 0x6F80_F42F_C897_1BD1L, 0x5ADB_11B7_B14B_D9A3L,
+ /* -40 */ 0x45B0_989D_DD5E_7163L, 0x08C8_EB12_CECF_6806L,
+ /* -39 */ 0x571C_BEC5_54B6_0DBBL, 0x6AFB_25D7_8283_4207L,
+ /* -38 */ 0x6CE3_EE76_A9E3_912AL, 0x65B9_EF4D_6324_1289L,
+ /* -37 */ 0x440E_750A_2A2E_3ABAL, 0x5F94_3590_5DF6_8B96L,
+ /* -36 */ 0x5512_124C_B4B9_C969L, 0x3779_42F4_7574_2E7BL,
+ /* -35 */ 0x6A56_96DF_E1E8_3BC3L, 0x6557_93B1_92D1_3A1AL,
+ /* -34 */ 0x4276_1E4B_ED31_255AL, 0x2F56_BC4E_FBC2_C450L,
+ /* -33 */ 0x5313_A5DE_E87D_6EB0L, 0x7B2C_6B62_BAB3_7564L,
+ /* -32 */ 0x67D8_8F56_A29C_CA5DL, 0x19F7_863B_6960_52BDL,
+ /* -31 */ 0x40E7_5996_25A1_FE7AL, 0x203A_B3E5_21DC_33B6L,
+ /* -30 */ 0x5121_2FFB_AF0A_7E18L, 0x6849_60DE_6A53_40A4L,
+ /* -29 */ 0x6569_7BFA_9ACD_1D9FL, 0x025B_B916_04E8_10CDL,
+ /* -28 */ 0x7EC3_DAF9_4180_6506L, 0x62F2_A75B_8622_1500L,
+ /* -27 */ 0x4F3A_68DB_C8F0_3F24L, 0x1DD7_A899_33D5_4D20L,
+ /* -26 */ 0x6309_0312_BB2C_4EEDL, 0x254D_92BF_80CA_A068L,
+ /* -25 */ 0x7BCB_43D7_69F7_62A8L, 0x4EA0_F76F_60FD_4882L,
+ /* -24 */ 0x4D5F_0A66_A23A_9DA9L, 0x3124_9AA5_9C9E_4D51L,
+ /* -23 */ 0x60B6_CD00_4AC9_4513L, 0x5D6D_C14F_03C5_E0A5L,
+ /* -22 */ 0x78E4_8040_5D7B_9658L, 0x54C9_31A2_C4B7_58CFL,
+ /* -21 */ 0x4B8E_D028_3A6D_3DF7L, 0x34FD_BF05_BAF2_9781L,
+ /* -20 */ 0x5E72_8432_4908_8D75L, 0x223D_2EC7_29AF_3D62L,
+ /* -19 */ 0x760F_253E_DB4A_B0D2L, 0x4ACC_7A78_F41B_0CBAL,
+ /* -18 */ 0x49C9_7747_490E_AE83L, 0x4EBF_CC8B_9890_E7F4L,
+ /* -17 */ 0x5C3B_D519_1B52_5A24L, 0x426F_BFAE_7EB5_21F1L,
+ /* -16 */ 0x734A_CA5F_6226_F0ADL, 0x530B_AF9A_1E62_6A6DL,
+ /* -15 */ 0x480E_BE7B_9D58_566CL, 0x43E7_4DC0_52FD_8285L,
+ /* -14 */ 0x5A12_6E1A_84AE_6C07L, 0x54E1_2130_67BC_E326L,
+ /* -13 */ 0x7097_09A1_25DA_0709L, 0x4A19_697C_81AC_1BEFL,
+ /* -12 */ 0x465E_6604_B7A8_4465L, 0x7E4F_E1ED_D10B_9175L,
+ /* -11 */ 0x57F5_FF85_E592_557FL, 0x3DE3_DA69_454E_75D3L,
+ /* -10 */ 0x6DF3_7F67_5EF6_EADFL, 0x2D5C_D103_96A2_1347L,
+ /* -9 */ 0x44B8_2FA0_9B5A_52CBL, 0x4C5A_02A2_3E25_4C0DL,
+ /* -8 */ 0x55E6_3B88_C230_E77EL, 0x3F70_834A_CDAE_9F10L,
+ /* -7 */ 0x6B5F_CA6A_F2BD_215EL, 0x0F4C_A41D_811A_46D4L,
+ /* -6 */ 0x431B_DE82_D7B6_34DAL, 0x698F_E692_70B0_6C44L,
+ /* -5 */ 0x53E2_D623_8DA3_C211L, 0x43F3_E037_0CDC_8755L,
+ /* -4 */ 0x68DB_8BAC_710C_B295L, 0x74F0_D844_D013_A92BL,
+ /* -3 */ 0x4189_374B_C6A7_EF9DL, 0x5916_872B_020C_49BBL,
+ /* -2 */ 0x51EB_851E_B851_EB85L, 0x0F5C_28F5_C28F_5C29L,
+ /* -1 */ 0x6666_6666_6666_6666L, 0x3333_3333_3333_3334L,
+ /* 0 */ 0x4000_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 1 */ 0x5000_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 2 */ 0x6400_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 3 */ 0x7D00_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 4 */ 0x4E20_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 5 */ 0x61A8_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 6 */ 0x7A12_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 7 */ 0x4C4B_4000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 8 */ 0x5F5E_1000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 9 */ 0x7735_9400_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 10 */ 0x4A81_7C80_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 11 */ 0x5D21_DBA0_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 12 */ 0x746A_5288_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 13 */ 0x48C2_7395_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 14 */ 0x5AF3_107A_4000_0000L, 0x0000_0000_0000_0000L,
+ /* 15 */ 0x71AF_D498_D000_0000L, 0x0000_0000_0000_0000L,
+ /* 16 */ 0x470D_E4DF_8200_0000L, 0x0000_0000_0000_0000L,
+ /* 17 */ 0x58D1_5E17_6280_0000L, 0x0000_0000_0000_0000L,
+ /* 18 */ 0x6F05_B59D_3B20_0000L, 0x0000_0000_0000_0000L,
+ /* 19 */ 0x4563_9182_44F4_0000L, 0x0000_0000_0000_0000L,
+ /* 20 */ 0x56BC_75E2_D631_0000L, 0x0000_0000_0000_0000L,
+ /* 21 */ 0x6C6B_935B_8BBD_4000L, 0x0000_0000_0000_0000L,
+ /* 22 */ 0x43C3_3C19_3756_4800L, 0x0000_0000_0000_0000L,
+ /* 23 */ 0x54B4_0B1F_852B_DA00L, 0x0000_0000_0000_0000L,
+ /* 24 */ 0x69E1_0DE7_6676_D080L, 0x0000_0000_0000_0000L,
+ /* 25 */ 0x422C_A8B0_A00A_4250L, 0x0000_0000_0000_0000L,
+ /* 26 */ 0x52B7_D2DC_C80C_D2E4L, 0x0000_0000_0000_0000L,
+ /* 27 */ 0x6765_C793_FA10_079DL, 0x0000_0000_0000_0000L,
+ /* 28 */ 0x409F_9CBC_7C4A_04C2L, 0x1000_0000_0000_0000L,
+ /* 29 */ 0x50C7_83EB_9B5C_85F2L, 0x5400_0000_0000_0000L,
+ /* 30 */ 0x64F9_64E6_8233_A76FL, 0x2900_0000_0000_0000L,
+ /* 31 */ 0x7E37_BE20_22C0_914BL, 0x1340_0000_0000_0000L,
+ /* 32 */ 0x4EE2_D6D4_15B8_5ACEL, 0x7C08_0000_0000_0000L,
+ /* 33 */ 0x629B_8C89_1B26_7182L, 0x5B0A_0000_0000_0000L,
+ /* 34 */ 0x7B42_6FAB_61F0_0DE3L, 0x31CC_8000_0000_0000L,
+ /* 35 */ 0x4D09_85CB_1D36_08AEL, 0x0F1F_D000_0000_0000L,
+ /* 36 */ 0x604B_E73D_E483_8AD9L, 0x52E7_C400_0000_0000L,
+ /* 37 */ 0x785E_E10D_5DA4_6D90L, 0x07A1_B500_0000_0000L,
+ /* 38 */ 0x4B3B_4CA8_5A86_C47AL, 0x04C5_1120_0000_0000L,
+ /* 39 */ 0x5E0A_1FD2_7128_7598L, 0x45F6_5568_0000_0000L,
+ /* 40 */ 0x758C_A7C7_0D72_92FEL, 0x5773_EAC2_0000_0000L,
+ /* 41 */ 0x4977_E8DC_6867_9BDFL, 0x16A8_72B9_4000_0000L,
+ /* 42 */ 0x5BD5_E313_8281_82D6L, 0x7C52_8F67_9000_0000L,
+ /* 43 */ 0x72CB_5BD8_6321_E38CL, 0x5B67_3341_7400_0000L,
+ /* 44 */ 0x47BF_1967_3DF5_2E37L, 0x7920_8008_E880_0000L,
+ /* 45 */ 0x59AE_DFC1_0D72_79C5L, 0x7768_A00B_22A0_0000L,
+ /* 46 */ 0x701A_97B1_50CF_1837L, 0x3542_C80D_EB48_0000L,
+ /* 47 */ 0x4610_9ECE_D281_6F22L, 0x5149_BD08_B30D_0000L,
+ /* 48 */ 0x5794_C682_8721_CAEBL, 0x259C_2C4A_DFD0_4000L,
+ /* 49 */ 0x6D79_F823_28EA_3DA6L, 0x0F03_375D_97C4_5000L,
+ /* 50 */ 0x446C_3B15_F992_6687L, 0x6962_029A_7EDA_B200L,
+ /* 51 */ 0x5587_49DB_77F7_0029L, 0x63BA_8341_1E91_5E80L,
+ /* 52 */ 0x6AE9_1C52_55F4_C034L, 0x1CA9_2411_6635_B620L,
+ /* 53 */ 0x42D1_B1B3_75B8_F820L, 0x51E9_B68A_DFE1_91D4L,
+ /* 54 */ 0x5386_1E20_5327_3628L, 0x6664_242D_97D9_F649L,
+ /* 55 */ 0x6867_A5A8_67F1_03B2L, 0x7FFD_2D38_FDD0_73DCL,
+ /* 56 */ 0x4140_C789_40F6_A24FL, 0x6FFE_3C43_9EA2_486AL,
+ /* 57 */ 0x5190_F96B_9134_4AE3L, 0x6BFD_CB54_864A_DA84L,
+ /* 58 */ 0x65F5_37C6_7581_5D9CL, 0x66FD_3E29_A7DD_9125L,
+ /* 59 */ 0x7F72_85B8_12E1_B504L, 0x00BC_8DB4_11D4_F56EL,
+ /* 60 */ 0x4FA7_9393_0BCD_1122L, 0x4075_D890_8B25_1965L,
+ /* 61 */ 0x6391_7877_CEC0_556BL, 0x1093_4EB4_ADEE_5FBEL,
+ /* 62 */ 0x7C75_D695_C270_6AC5L, 0x74B8_2261_D969_F7ADL,
+ /* 63 */ 0x4DC9_A61D_9986_42BBL, 0x58F3_157D_27E2_3ACCL,
+ /* 64 */ 0x613C_0FA4_FFE7_D36AL, 0x4F2F_DADC_71DA_C97FL,
+ /* 65 */ 0x798B_138E_3FE1_C845L, 0x22FB_D193_8E51_7BDFL,
+ /* 66 */ 0x4BF6_EC38_E7ED_1D2BL, 0x25DD_62FC_38F2_ED6CL,
+ /* 67 */ 0x5EF4_A747_21E8_6476L, 0x0F54_BBBB_472F_A8C6L,
+ /* 68 */ 0x76B1_D118_EA62_7D93L, 0x5329_EAAA_18FB_92F8L,
+ /* 69 */ 0x4A2F_22AF_927D_8E7CL, 0x23FA_32AA_4F9D_3BDBL,
+ /* 70 */ 0x5CBA_EB5B_771C_F21BL, 0x2CF8_BF54_E384_8AD2L,
+ /* 71 */ 0x73E9_A632_54E4_2EA2L, 0x1836_EF2A_1C65_AD86L,
+ /* 72 */ 0x4872_07DF_750E_9D25L, 0x2F22_557A_51BF_8C74L,
+ /* 73 */ 0x5A8E_89D7_5252_446EL, 0x5AEA_EAD8_E62F_6F91L,
+ /* 74 */ 0x7132_2C4D_26E6_D58AL, 0x31A5_A58F_1FBB_4B75L,
+ /* 75 */ 0x46BF_5BB0_3850_4576L, 0x3F07_8779_73D5_0F29L,
+ /* 76 */ 0x586F_329C_4664_56D4L, 0x0EC9_6957_D0CA_52F3L,
+ /* 77 */ 0x6E8A_FF43_57FD_6C89L, 0x127B_C3AD_C4FC_E7B0L,
+ /* 78 */ 0x4516_DF8A_16FE_63D5L, 0x5B8D_5A4C_9B1E_10CEL,
+ /* 79 */ 0x565C_976C_9CBD_FCCBL, 0x1270_B0DF_C1E5_9502L,
+ /* 80 */ 0x6BF3_BD47_C3ED_7BFDL, 0x770C_DD17_B25E_FA42L,
+ /* 81 */ 0x4378_564C_DA74_6D7EL, 0x5A68_0A2E_CF7B_5C69L,
+ /* 82 */ 0x5456_6BE0_1111_88DEL, 0x3102_0CBA_835A_3384L,
+ /* 83 */ 0x696C_06D8_1555_EB15L, 0x7D42_8FE9_2430_C065L,
+ /* 84 */ 0x41E3_8447_0D55_B2EDL, 0x5E49_99F1_B69E_783FL,
+ /* 85 */ 0x525C_6558_D0AB_1FA9L, 0x15DC_006E_2446_164FL,
+ /* 86 */ 0x66F3_7EAF_04D5_E793L, 0x3B53_0089_AD57_9BE2L,
+ /* 87 */ 0x4058_2F2D_6305_B0BCL, 0x1513_E056_0C56_C16EL,
+ /* 88 */ 0x506E_3AF8_BBC7_1CEBL, 0x1A58_D86B_8F6C_71C9L,
+ /* 89 */ 0x6489_C9B6_EAB8_E426L, 0x00EF_0E86_7347_8E3BL,
+ /* 90 */ 0x7DAC_3C24_A567_1D2FL, 0x412A_D228_1019_71C9L,
+ /* 91 */ 0x4E8B_A596_E760_723DL, 0x58BA_C359_0A0F_E71EL,
+ /* 92 */ 0x622E_8EFC_A138_8ECDL, 0x0EE9_742F_4C93_E0E6L,
+ /* 93 */ 0x7ABA_32BB_C986_B280L, 0x32A3_D13B_1FB8_D91FL,
+ /* 94 */ 0x4CB4_5FB5_5DF4_2F90L, 0x1FA6_62C4_F3D3_87B3L,
+ /* 95 */ 0x5FE1_77A2_B571_3B74L, 0x278F_FB76_30C8_69A0L,
+ /* 96 */ 0x77D9_D58B_62CD_8A51L, 0x3173_FA53_BCFA_8408L,
+ /* 97 */ 0x4AE8_2577_1DC0_7672L, 0x6EE8_7C74_561C_9285L,
+ /* 98 */ 0x5DA2_2ED4_E530_940FL, 0x4AA2_9B91_6BA3_B726L,
+ /* 99 */ 0x750A_BA8A_1E7C_B913L, 0x3D4B_4275_C68C_A4F0L,
+ /* 100 */ 0x4926_B496_530D_F3ACL, 0x164F_0989_9C17_E716L,
+ /* 101 */ 0x5B70_61BB_E7D1_7097L, 0x1BE2_CBEC_031D_E0DCL,
+ /* 102 */ 0x724C_7A2A_E1C5_CCBDL, 0x02DB_7EE7_03E5_5912L,
+ /* 103 */ 0x476F_CC5A_CD1B_9FF6L, 0x11C9_2F50_626F_57ACL,
+ /* 104 */ 0x594B_BF71_8062_87F3L, 0x563B_7B24_7B0B_2D96L,
+ /* 105 */ 0x6F9E_AF4D_E07B_29F0L, 0x4BCA_59ED_99CD_F8FCL,
+ /* 106 */ 0x45C3_2D90_AC4C_FA36L, 0x2F5E_7834_8020_BB9EL,
+ /* 107 */ 0x5733_F8F4_D760_38C3L, 0x7B36_1641_A028_EA85L,
+ /* 108 */ 0x6D00_F732_0D38_46F4L, 0x7A03_9BD2_0833_2526L,
+ /* 109 */ 0x4420_9A7F_4843_2C59L, 0x0C42_4163_451F_F738L,
+ /* 110 */ 0x5528_C11F_1A53_F76FL, 0x2F52_D1BC_1667_F506L,
+ /* 111 */ 0x6A72_F166_E0E8_F54BL, 0x1B27_862B_1C01_F247L,
+ /* 112 */ 0x4287_D6E0_4C91_994FL, 0x00F8_B3DA_F181_376DL,
+ /* 113 */ 0x5329_CC98_5FB5_FFA2L, 0x6136_E0D1_ADE1_8548L,
+ /* 114 */ 0x67F4_3FBE_77A3_7F8BL, 0x3984_9906_1959_E699L,
+ /* 115 */ 0x40F8_A7D7_0AC6_2FB7L, 0x13F2_DFA3_CFD8_3020L,
+ /* 116 */ 0x5136_D1CC_CD77_BBA4L, 0x78EF_978C_C3CE_3C28L,
+ /* 117 */ 0x6584_8640_00D5_AA8EL, 0x172B_7D6F_F4C1_CB32L,
+ /* 118 */ 0x7EE5_A7D0_010B_1531L, 0x5CF6_5CCB_F1F2_3DFEL,
+ /* 119 */ 0x4F4F_88E2_00A6_ED3FL, 0x0A19_F9FF_7737_66BFL,
+ /* 120 */ 0x6323_6B1A_80D0_A88EL, 0x6CA0_787F_5505_406FL,
+ /* 121 */ 0x7BEC_45E1_2104_D2B2L, 0x47C8_969F_2A46_908AL,
+ /* 122 */ 0x4D73_ABAC_B4A3_03AFL, 0x4CDD_5E23_7A6C_1A57L,
+ /* 123 */ 0x60D0_9697_E1CB_C49BL, 0x4014_B5AC_5907_20ECL,
+ /* 124 */ 0x7904_BC3D_DA3E_B5C2L, 0x3019_E317_6F48_E927L,
+ /* 125 */ 0x4BA2_F5A6_A867_3199L, 0x3E10_2DEE_A58D_91B9L,
+ /* 126 */ 0x5E8B_B310_5280_FDFFL, 0x6D94_396A_4EF0_F627L,
+ /* 127 */ 0x762E_9FD4_6721_3D7FL, 0x68F9_47C4_E2AD_33B0L,
+ /* 128 */ 0x49DD_23E4_C074_C66FL, 0x719B_CCDB_0DAC_404EL,
+ /* 129 */ 0x5C54_6CDD_F091_F80BL, 0x6E02_C011_D117_5062L,
+ /* 130 */ 0x7369_8815_6CB6_760EL, 0x6983_7016_455D_247AL,
+ /* 131 */ 0x4821_F50D_63F2_09C9L, 0x21F2_260D_EB5A_36CCL,
+ /* 132 */ 0x5A2A_7250_BCEE_8C3BL, 0x4A6E_AF91_6630_C47FL,
+ /* 133 */ 0x70B5_0EE4_EC2A_2F4AL, 0x3D0A_5B75_BFBC_F59FL,
+ /* 134 */ 0x4671_294F_139A_5D8EL, 0x4626_7929_97D6_1984L,
+ /* 135 */ 0x580D_73A2_D880_F4F2L, 0x17B0_1773_FDCB_9FE4L,
+ /* 136 */ 0x6E10_D08B_8EA1_322EL, 0x5D9C_1D50_FD3E_87DDL,
+ /* 137 */ 0x44CA_8257_3924_BF5DL, 0x1A81_9252_9E47_14EBL,
+ /* 138 */ 0x55FD_22ED_076D_EF34L, 0x4121_F6E7_45D8_DA25L,
+ /* 139 */ 0x6B7C_6BA8_4949_6B01L, 0x516A_74A1_174F_10AEL,
+ /* 140 */ 0x432D_C349_2DCD_E2E1L, 0x02E2_88E4_AE91_6A6DL,
+ /* 141 */ 0x53F9_341B_7941_5B99L, 0x239B_2B1D_DA35_C508L,
+ /* 142 */ 0x68F7_8122_5791_B27FL, 0x4C81_F5E5_50C3_364AL,
+ /* 143 */ 0x419A_B0B5_76BB_0F8FL, 0x5FD1_39AF_527A_01EFL,
+ /* 144 */ 0x5201_5CE2_D469_D373L, 0x57C5_881B_2718_826AL,
+ /* 145 */ 0x6681_B41B_8984_4850L, 0x4DB6_EA21_F0DE_A304L,
+ /* 146 */ 0x4011_1091_35F2_AD32L, 0x3092_5255_368B_25E3L,
+ /* 147 */ 0x5015_54B5_836F_587EL, 0x7CB6_E6EA_842D_EF5CL,
+ /* 148 */ 0x641A_A9E2_E44B_2E9EL, 0x5BE4_A0A5_2539_6B32L,
+ /* 149 */ 0x7D21_545B_9D5D_FA46L, 0x32DD_C8CE_6E87_C5FFL,
+ /* 150 */ 0x4E34_D4B9_425A_BC6BL, 0x7FCA_9D81_0514_DBBFL,
+ /* 151 */ 0x61C2_09E7_92F1_6B86L, 0x7FBD_44E1_465A_12AFL,
+ /* 152 */ 0x7A32_8C61_77AD_C668L, 0x5FAC_9619_97F0_975BL,
+ /* 153 */ 0x4C5F_97BC_EACC_9C01L, 0x3BCB_DDCF_FEF6_5E99L,
+ /* 154 */ 0x5F77_7DAC_257F_C301L, 0x6ABE_D543_FEB3_F63FL,
+ /* 155 */ 0x7755_5D17_2EDF_B3C2L, 0x256E_8A94_FE60_F3CFL,
+ /* 156 */ 0x4A95_5A2E_7D4B_D059L, 0x3765_169D_1EFC_9861L,
+ /* 157 */ 0x5D3A_B0BA_1C9E_C46FL, 0x653E_5C44_66BB_BE7AL,
+ /* 158 */ 0x7489_5CE8_A3C6_758BL, 0x5E8D_F355_806A_AE18L,
+ /* 159 */ 0x48D5_DA11_665C_0977L, 0x2B18_B815_7042_ACCFL,
+ /* 160 */ 0x5B0B_5095_BFF3_0BD5L, 0x15DE_E61A_CC53_5803L,
+ /* 161 */ 0x71CE_24BB_2FEF_CECAL, 0x3B56_9FA1_7F68_2E03L,
+ /* 162 */ 0x4720_D6F4_FDF5_E13EL, 0x4516_23C4_EFA1_1CC2L,
+ /* 163 */ 0x58E9_0CB2_3D73_598EL, 0x165B_ACB6_2B89_63F3L,
+ /* 164 */ 0x6F23_4FDE_CCD0_2FF1L, 0x5BF2_97E3_B66B_BCEFL,
+ /* 165 */ 0x4576_11EB_4002_1DF7L, 0x0977_9EEE_5203_5616L,
+ /* 166 */ 0x56D3_9666_1002_A574L, 0x6BD5_86A9_E684_2B9BL,
+ /* 167 */ 0x6C88_7BFF_9403_4ED2L, 0x06CA_E854_6025_3682L,
+ /* 168 */ 0x43D5_4D7F_BC82_1143L, 0x243E_D134_BC17_4211L,
+ /* 169 */ 0x54CA_A0DF_ABA2_9594L, 0x0D4E_8581_EB1D_1295L,
+ /* 170 */ 0x69FD_4917_968B_3AF9L, 0x10A2_26E2_65E4_573BL,
+ /* 171 */ 0x423E_4DAE_BE17_04DBL, 0x5A65_584D_7FAE_B685L,
+ /* 172 */ 0x52CD_E11A_6D9C_C612L, 0x50FE_AE60_DF9A_6426L,
+ /* 173 */ 0x6781_5961_0903_F797L, 0x253E_59F9_1780_FD2FL,
+ /* 174 */ 0x40B0_D7DC_A5A2_7ABEL, 0x4746_F83B_AEB0_9E3EL,
+ /* 175 */ 0x50DD_0DD3_CF0B_196EL, 0x1918_B64A_9A5C_C5CDL,
+ /* 176 */ 0x6514_5148_C2CD_DFC9L, 0x5F5E_E3DD_40F3_F740L,
+ /* 177 */ 0x7E59_659A_F381_57BCL, 0x1736_9CD4_9130_F510L,
+ /* 178 */ 0x4EF7_DF80_D830_D6D5L, 0x4E82_2204_DABE_992AL,
+ /* 179 */ 0x62B5_D761_0E3D_0C8BL, 0x0222_AA86_116E_3F75L,
+ /* 180 */ 0x7B63_4D39_51CC_4FADL, 0x62AB_5527_95C9_CF52L,
+ /* 181 */ 0x4D1E_1043_D31F_B1CCL, 0x4DAB_1538_BD9E_2193L,
+ /* 182 */ 0x6065_9454_C7E7_9E3FL, 0x6115_DA86_ED05_A9F8L,
+ /* 183 */ 0x787E_F969_F9E1_85CFL, 0x595B_5128_A847_1476L,
+ /* 184 */ 0x4B4F_5BE2_3C2C_F3A1L, 0x67D9_12B9_692C_6CCAL,
+ /* 185 */ 0x5E23_32DA_CB38_308AL, 0x21CF_5767_C377_87FCL,
+ /* 186 */ 0x75AB_FF91_7E06_3CACL, 0x6A43_2D41_B455_69FBL,
+ /* 187 */ 0x498B_7FBA_EEC3_E5ECL, 0x0269_FC49_10B5_623DL,
+ /* 188 */ 0x5BEE_5FA9_AA74_DF67L, 0x0304_7B5B_54E2_BACCL,
+ /* 189 */ 0x72E9_F794_1512_1740L, 0x63C5_9A32_2A1B_697FL,
+ /* 190 */ 0x47D2_3ABC_8D2B_4E88L, 0x3E5B_805F_5A51_21F0L,
+ /* 191 */ 0x59C6_C96B_B076_222AL, 0x4DF2_6077_30E5_6A6CL,
+ /* 192 */ 0x7038_7BC6_9C93_AAB5L, 0x216E_F894_FD1E_C506L,
+ /* 193 */ 0x4623_4D5C_21DC_4AB1L, 0x24E5_5B5D_1E33_3B24L,
+ /* 194 */ 0x57AC_20B3_2A53_5D5DL, 0x4E1E_B234_65C0_09EDL,
+ /* 195 */ 0x6D97_28DF_F4E8_34B5L, 0x01A6_5EC1_7F30_0C68L,
+ /* 196 */ 0x447E_798B_F911_20F1L, 0x1107_FB38_EF7E_07C1L,
+ /* 197 */ 0x559E_17EE_F755_692DL, 0x3549_FA07_2B5D_89B1L,
+ /* 198 */ 0x6B05_9DEA_B52A_C378L, 0x629C_7888_F634_EC1EL,
+ /* 199 */ 0x42E3_82B2_B13A_BA2BL, 0x3DA1_CB55_99E1_1393L,
+ /* 200 */ 0x539C_635F_5D89_68B6L, 0x2D0A_3E2B_0059_5877L,
+ /* 201 */ 0x6883_7C37_34EB_C2E3L, 0x784C_CDB5_C06F_AE95L,
+ /* 202 */ 0x4152_2DA2_8113_59CEL, 0x3B30_0091_9845_CD1DL,
+ /* 203 */ 0x51A6_B90B_2158_3042L, 0x09FC_00B5_FE57_4065L,
+ /* 204 */ 0x6610_674D_E9AE_3C52L, 0x4C7B_00E3_7DED_107EL,
+ /* 205 */ 0x7F94_8121_6419_CB67L, 0x1F99_C11C_5D68_549DL,
+ /* 206 */ 0x4FBC_D0B4_DE90_1F20L, 0x43C0_18B1_BA61_34E2L,
+ /* 207 */ 0x63AC_04E2_1634_26E8L, 0x54B0_1EDE_28F9_821BL,
+ /* 208 */ 0x7C97_061A_9BC1_30A2L, 0x69DC_2695_B337_E2A1L,
+ /* 209 */ 0x4DDE_63D0_A158_BE65L, 0x6229_981D_9002_EDA5L,
+ /* 210 */ 0x6155_FCC4_C9AE_EDFFL, 0x1AB3_FE24_F403_A90EL,
+ /* 211 */ 0x79AB_7BF5_FC1A_A97FL, 0x0160_FDAE_3104_9351L,
+ /* 212 */ 0x4C0B_2D79_BD90_A9EFL, 0x30DC_9E8C_DEA2_DC13L,
+ /* 213 */ 0x5F0D_F8D8_2CF4_D46BL, 0x1D13_C630_164B_9318L,
+ /* 214 */ 0x76D1_770E_3832_0986L, 0x0458_B7BC_1BDE_77DDL,
+ /* 215 */ 0x4A42_EA68_E31F_45F3L, 0x62B7_72D5_916B_0AEBL,
+ /* 216 */ 0x5CD3_A503_1BE7_1770L, 0x5B65_4F8A_F5C5_CDA5L,
+ /* 217 */ 0x7408_8E43_E2E0_DD4CL, 0x723E_A36D_B337_410EL,
+ /* 218 */ 0x4885_58EA_6DCC_8A50L, 0x0767_2624_9002_88A9L,
+ /* 219 */ 0x5AA6_AF25_093F_ACE4L, 0x0940_EFAD_B403_2AD3L,
+ /* 220 */ 0x7150_5AEE_4B8F_981DL, 0x0B91_2B99_2103_F588L,
+ /* 221 */ 0x46D2_38D4_EF39_BF12L, 0x173A_BB3F_B4A2_7975L,
+ /* 222 */ 0x5886_C70A_2B08_2ED6L, 0x5D09_6A0F_A1CB_17D2L,
+ /* 223 */ 0x6EA8_78CC_B5CA_3A8CL, 0x344B_C493_8A3D_DDC7L,
+ /* 224 */ 0x4529_4B7F_F19E_6497L, 0x60AF_5ADC_3666_AA9CL,
+ /* 225 */ 0x5673_9E5F_EE05_FDBDL, 0x58DB_3193_4400_5543L,
+ /* 226 */ 0x6C10_85F7_E987_7D2DL, 0x0F11_FDF8_1500_6A94L,
+ /* 227 */ 0x438A_53BA_F1F4_AE3CL, 0x196B_3EBB_0D20_429DL,
+ /* 228 */ 0x546C_E8A9_AE71_D9CBL, 0x1FC6_0E69_D068_5344L,
+ /* 229 */ 0x6988_22D4_1A0E_503EL, 0x07B7_9204_4482_6815L,
+ /* 230 */ 0x41F5_15C4_9048_F226L, 0x64D2_BB42_AAD1_810DL,
+ /* 231 */ 0x5272_5B35_B45B_2EB0L, 0x3E07_6A13_5585_E150L,
+ /* 232 */ 0x670E_F203_2171_FA5CL, 0x4D89_4498_2AE7_59A4L,
+ /* 233 */ 0x4069_5741_F4E7_3C79L, 0x7075_CADF_1AD0_9807L,
+ /* 234 */ 0x5083_AD12_7221_0B98L, 0x2C93_3D96_E184_BE08L,
+ /* 235 */ 0x64A4_9857_0EA9_4E7EL, 0x37B8_0CFC_99E5_ED8AL,
+ /* 236 */ 0x7DCD_BE6C_D253_A21EL, 0x05A6_103B_C05F_68EDL,
+ /* 237 */ 0x4EA0_9704_0374_4552L, 0x6387_CA25_583B_A194L,
+ /* 238 */ 0x6248_BCC5_0451_56A7L, 0x3C69_BCAE_AE4A_89F9L,
+ /* 239 */ 0x7ADA_EBF6_4565_AC51L, 0x2B84_2BDA_59DD_2C77L,
+ /* 240 */ 0x4CC8_D379_EB5F_8BB2L, 0x6B32_9B68_782A_3BCBL,
+ /* 241 */ 0x5FFB_0858_6637_6E9FL, 0x45FF_4242_9634_CABDL,
+ /* 242 */ 0x77F9_CA6E_7FC5_4A47L, 0x377F_12D3_3BC1_FD6DL,
+ /* 243 */ 0x4AFC_1E85_0FDB_4E6CL, 0x52AF_6BC4_0559_3E64L,
+ /* 244 */ 0x5DBB_2626_53D2_2207L, 0x675B_46B5_06AF_8DFDL,
+ /* 245 */ 0x7529_EFAF_E8C6_AA89L, 0x6132_1862_485B_717CL,
+ /* 246 */ 0x493A_35CD_F17C_2A96L, 0x0CBF_4F3D_6D39_26EEL,
+ /* 247 */ 0x5B88_C341_6DDB_353BL, 0x4FEF_230C_C887_70A9L,
+ /* 248 */ 0x726A_F411_C952_028AL, 0x43EA_EBCF_FAA9_4CD3L,
+ /* 249 */ 0x4782_D88B_1DD3_4196L, 0x4A72_D361_FCA9_D004L,
+ /* 250 */ 0x5963_8EAD_E548_11FCL, 0x1D0F_883A_7BD4_4405L,
+ /* 251 */ 0x6FBC_7259_5E9A_167BL, 0x2453_6A49_1AC9_5506L,
+ /* 252 */ 0x45D5_C777_DB20_4E0DL, 0x06B4_226D_B0BD_D524L,
+ /* 253 */ 0x574B_3955_D1E8_6190L, 0x2861_2B09_1CED_4A6DL,
+ /* 254 */ 0x6D1E_07AB_4662_79F4L, 0x3279_75CB_6428_9D08L,
+ /* 255 */ 0x4432_C4CB_0BFD_8C38L, 0x5F8B_E99F_1E99_6225L,
+ /* 256 */ 0x553F_75FD_CEFC_EF46L, 0x776E_E406_E63F_BAAEL,
+ /* 257 */ 0x6A8F_537D_42BC_2B18L, 0x554A_9D08_9FCF_A95AL,
+ /* 258 */ 0x4299_942E_49B5_9AEFL, 0x354E_A225_63E1_C9D8L,
+ /* 259 */ 0x533F_F939_DC23_01ABL, 0x22A2_4AAE_BCDA_3C4EL,
+ /* 260 */ 0x680F_F788_532B_C216L, 0x0B4A_DD5A_6C10_CB62L,
+ /* 261 */ 0x4109_FAB5_33FB_594DL, 0x670E_CA58_838A_7F1DL,
+ /* 262 */ 0x514C_7962_80FA_2FA1L, 0x20D2_7CEE_A46D_1EE4L,
+ /* 263 */ 0x659F_97BB_2138_BB89L, 0x4907_1C2A_4D88_669DL,
+ /* 264 */ 0x7F07_7DA9_E986_EA6BL, 0x7B48_E334_E0EA_8045L,
+ /* 265 */ 0x4F64_AE8A_31F4_5283L, 0x3D0D_8E01_0C92_902BL,
+ /* 266 */ 0x633D_DA2C_BE71_6724L, 0x2C50_F181_4FB7_3436L,
+ /* 267 */ 0x7C0D_50B7_EE0D_C0EDL, 0x3765_2DE1_A3A5_0143L,
+ /* 268 */ 0x4D88_5272_F4C8_9894L, 0x329F_3CAD_0647_20CAL,
+ /* 269 */ 0x60EA_670F_B1FA_BEB9L, 0x3F47_0BD8_47D8_E8FDL,
+ /* 270 */ 0x7925_00D3_9E79_6E67L, 0x6F18_CECE_59CF_233CL,
+ /* 271 */ 0x4BB7_2084_430B_E500L, 0x756F_8140_F821_7605L,
+ /* 272 */ 0x5EA4_E8A5_53CE_DE41L, 0x12CB_6191_3629_D387L,
+ /* 273 */ 0x764E_22CE_A8C2_95D1L, 0x377E_39F5_83B4_4868L,
+ /* 274 */ 0x49F0_D5C1_2979_9DA2L, 0x72AE_E439_7250_AD41L,
+ /* 275 */ 0x5C6D_0B31_73D8_050BL, 0x4F5A_9D47_CEE4_D891L,
+ /* 276 */ 0x7388_4DFD_D0CE_064EL, 0x4331_4499_C29E_0EB6L,
+ /* 277 */ 0x4835_30BE_A280_C3F1L, 0x09FE_CAE0_19A2_C932L,
+ /* 278 */ 0x5A42_7CEE_4B20_F4EDL, 0x2C7E_7D98_200B_7B7EL,
+ /* 279 */ 0x70D3_1C29_DDE9_3228L, 0x579E_1CFE_280E_5A5DL,
+ /* 280 */ 0x4683_F19A_2AB1_BF59L, 0x36C2_D21E_D908_F87BL,
+ /* 281 */ 0x5824_EE00_B55E_2F2FL, 0x6473_86A6_8F4B_3699L,
+ /* 282 */ 0x6E2E_2980_E2B5_BAFBL, 0x5D90_6850_331E_043FL,
+ /* 283 */ 0x44DC_D9F0_8DB1_94DDL, 0x2A7A_4132_1FF2_C2A8L,
+ /* 284 */ 0x5614_106C_B11D_FA14L, 0x5518_D17E_A7EF_7352L,
+ /* 285 */ 0x6B99_1487_DD65_7899L, 0x6A5F_05DE_51EB_5026L,
+ /* 286 */ 0x433F_ACD4_EA5F_6B60L, 0x127B_63AA_F333_1218L,
+ /* 287 */ 0x540F_980A_24F7_4638L, 0x171A_3C95_AFFF_D69EL,
+ /* 288 */ 0x6913_7E0C_AE35_17C6L, 0x1CE0_CBBB_1BFF_CC45L,
+ /* 289 */ 0x41AC_2EC7_ECE1_2EDBL, 0x720C_7F54_F17F_DFABL,
+ /* 290 */ 0x5217_3A79_E819_7A92L, 0x6E8F_9F2A_2DDF_D796L,
+ /* 291 */ 0x669D_0918_621F_D937L, 0x4A33_86F4_B957_CD7BL,
+ /* 292 */ 0x4022_25AF_3D53_E7C2L, 0x5E60_3458_F3D6_E06DL,
+ /* 293 */ 0x502A_AF1B_0CA8_E1B3L, 0x35F8_416F_30CC_9888L,
+ /* 294 */ 0x6435_5AE1_CFD3_1A20L, 0x2376_51CA_FCFF_BEAAL,
+ /* 295 */ 0x7D42_B19A_43C7_E0A8L, 0x2C53_E63D_BC3F_AE55L,
+ /* 296 */ 0x4E49_AF00_6A5C_EC69L, 0x1BB4_6FE6_95A7_CCF5L,
+ /* 297 */ 0x61DC_1AC0_84F4_2783L, 0x42A1_8BE0_3B11_C033L,
+ /* 298 */ 0x7A53_2170_A631_3164L, 0x3349_EED8_49D6_303FL,
+ /* 299 */ 0x4C73_F4E6_67DE_BEDEL, 0x600E_3547_2E25_DE28L,
+ /* 300 */ 0x5F90_F220_01D6_6E96L, 0x3811_C298_F9AF_55B1L,
+ /* 301 */ 0x7775_2EA8_024C_0A3CL, 0x0616_333F_381B_2B1EL,
+ /* 302 */ 0x4AA9_3D29_016F_8665L, 0x43CD_E007_8310_FAF3L,
+ /* 303 */ 0x5D53_8C73_41CB_67FEL, 0x74C1_5809_63D5_39AFL,
+ /* 304 */ 0x74A8_6F90_123E_41FEL, 0x51F1_AE0B_BCCA_881BL,
+ /* 305 */ 0x48E9_45BA_0B66_E93FL, 0x1337_0CC7_55FE_9511L,
+ /* 306 */ 0x5B23_9728_8E40_A38EL, 0x7804_CFF9_2B7E_3A55L,
+ /* 307 */ 0x71EC_7CF2_B1D0_CC72L, 0x5606_03F7_765D_C8EAL,
+ /* 308 */ 0x4733_CE17_AF22_7FC7L, 0x55C3_C27A_A9FA_9D93L,
+ /* 309 */ 0x5900_C19D_9AEB_1FB9L, 0x4B34_B319_5479_44F7L,
+ /* 310 */ 0x6F40_F205_01A5_E7A7L, 0x7E01_DFDF_A997_9635L,
+ /* 311 */ 0x4588_9743_2107_B0C8L, 0x7EC1_2BEB_C9FE_BDE1L,
+ /* 312 */ 0x56EA_BD13_E949_9CFBL, 0x1E71_76E6_BC7E_6D59L,
+ /* 313 */ 0x6CA5_6C58_E39C_043AL, 0x060D_D4A0_6B9E_08B0L,
+ /* 314 */ 0x43E7_63B7_8E41_82A4L, 0x23C8_A4E4_4342_C56EL,
+ /* 315 */ 0x54E1_3CA5_71D1_E34DL, 0x2CBA_CE1D_5413_76C9L,
+ /* 316 */ 0x6A19_8BCE_CE46_5C20L, 0x57E9_81A4_A918_547BL,
+ /* 317 */ 0x424F_F761_40EB_F994L, 0x36F1_F106_E9AF_34CDL,
+ /* 318 */ 0x52E3_F539_9126_F7F9L, 0x44AE_6D48_A41B_0201L,
+ /* 319 */ 0x679C_F287_F570_B5F7L, 0x75DA_089A_CD21_C281L,
+ /* 320 */ 0x40C2_1794_F966_71BAL, 0x79A8_4560_C035_1991L,
+ /* 321 */ 0x50F2_9D7A_37C0_0E29L, 0x5812_56B8_F042_5FF5L,
+ /* 322 */ 0x652F_44D8_C5B0_11B4L, 0x0E16_EC67_2C52_F7F2L,
+ /* 323 */ 0x7E7B_160E_F71C_1621L, 0x119C_A780_F767_B5EEL,
+ /* 324 */ 0x4F0C_EDC9_5A71_8DD4L, 0x5B01_E8B0_9AA0_D1B5L,
+ };
+
+}
diff --git a/test/jdk/java/lang/Floating/DoubleToDecString.java
b/test/jdk/java/lang/Floating/DoubleToDecString.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/DoubleToDecString.java
@@ -0,0 +1,312 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License
version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.util.Random;
+
+import static java.lang.Math.*;
+import static java.lang.Double.*;
+
+/*
+ * @test
+ * @bug 8202555
+
+ * @author Raffaello Giulietti
+ */
+public class DoubleToDecString {
+
+ private static final boolean FAILURE_THROWS_EXCEPTION = true;
+
+ private static void assertTrue(boolean ok, double v, String s) {
+ if (ok) {
+ return;
+ }
+ String message = "Double::toString applied to " +
+ "Double.longBitsToDouble(" +
+ "0x" + Long.toHexString(doubleToRawLongBits(v)) + "L" +
+ ")" +
+ " returns " +
+ "\"" + s + "\"" +
+ ", which is not correct according to the specification.";
+ if (FAILURE_THROWS_EXCEPTION) {
+ throw new RuntimeException(message);
+ }
+ System.err.println(message);
+ }
+
+ private static void toDec(double v) {
+ String s = Double.toString(v);
+ assertTrue(new DoubleToStringChecker(v, s).isOK(), v, s);
+ }
+
+ private static void testExtremeValues() {
+ toDec(NEGATIVE_INFINITY);
+ toDec(-MAX_VALUE);
+ toDec(-MIN_NORMAL);
+ toDec(-MIN_VALUE);
+ toDec(-0.0);
+ toDec(0.0);
+ toDec(MIN_VALUE);
+ toDec(MIN_NORMAL);
+ toDec(MAX_VALUE);
+ toDec(POSITIVE_INFINITY);
+ toDec(NaN);
+ /*
+ Quiet NaNs have the most significant bit of the mantissa as 1,
+ while signaling NaNs have it as 0.
+ Exercise 4 combinations of quiet/signaling NaNs and
+ "positive/negative" NaNs
+ */
+ toDec(longBitsToDouble(0x7FF8_0000_0000_0001L));
+ toDec(longBitsToDouble(0x7FF0_0000_0000_0001L));
+ toDec(longBitsToDouble(0xFFF8_0000_0000_0001L));
+ toDec(longBitsToDouble(0xFFF0_0000_0000_0001L));
+ }
+
+ /*
+ A few "powers of 10" are incorrectly rendered by the JDK.
+ The rendering is either too long or it is not the closest decimal.
+ */
+ private static void testPowersOf10() {
+ for (int e = -323; e <= 309; ++e) {
+ toDec(parseDouble("1e" + e));
+ }
+ }
+
+ /*
+ Many powers of 2 are incorrectly rendered by the JDK.
+ The rendering is either too long or it is not the closest decimal.
+ */
+ private static void testPowersOf2() {
+ for (double v = MIN_VALUE; v <= MAX_VALUE; v *= 2.0) {
+ toDec(v);
+ }
+ }
+
+ /*
+ There are tons of doubles that are rendered incorrectly by the JDK.
+ While the renderings correctly round back to the original value,
+ they are longer than needed or are not the closest decimal to the
double.
+ Here are just a very few examples.
+ */
+ private static final String[] Anomalies = {
+ // JDK renders these, and others, with 18 digits!
+ "2.82879384806159E17", "1.387364135037754E18",
+ "1.45800632428665E17",
+
+ // JDK renders these longer than needed.
+ "1.6E-322", "6.3E-322",
+ "7.3879E20", "2.0E23", "7.0E22", "9.2E22",
+ "9.5E21", "3.1E22", "5.63E21", "8.41E21",
+
+ // JDK does not render these, and many others, as the closest.
+ "9.9E-324", "9.9E-323",
+ "1.9400994884341945E25", "3.6131332396758635E25",
+ "2.5138990223946153E25",
+ };
+
+ private static void testSomeAnomalies() {
+ for (String dec : Anomalies) {
+ toDec(parseDouble(dec));
+ }
+ }
+
+ /*
+ Values are from
+ Paxson V, "A Program for Testing IEEE Decimal–Binary Conversion"
+ */
+ private static final double[] PaxsonSignificands = {
+ 8_511_030_020_275_656L,
+ 5_201_988_407_066_741L,
+ 6_406_892_948_269_899L,
+ 8_431_154_198_732_492L,
+ 6_475_049_196_144_587L,
+ 8_274_307_542_972_842L,
+ 5_381_065_484_265_332L,
+ 6_761_728_585_499_734L,
+ 7_976_538_478_610_756L,
+ 5_982_403_858_958_067L,
+ 5_536_995_190_630_837L,
+ 7_225_450_889_282_194L,
+ 7_225_450_889_282_194L,
+ 8_703_372_741_147_379L,
+ 8_944_262_675_275_217L,
+ 7_459_803_696_087_692L,
+ 6_080_469_016_670_379L,
+ 8_385_515_147_034_757L,
+ 7_514_216_811_389_786L,
+ 8_397_297_803_260_511L,
+ 6_733_459_239_310_543L,
+ 8_091_450_587_292_794L,
+
+ 6_567_258_882_077_402L,
+ 6_712_731_423_444_934L,
+ 6_712_731_423_444_934L,
+ 5_298_405_411_573_037L,
+ 5_137_311_167_659_507L,
+ 6_722_280_709_661_868L,
+ 5_344_436_398_034_927L,
+ 8_369_123_604_277_281L,
+ 8_995_822_108_487_663L,
+ 8_942_832_835_564_782L,
+ 8_942_832_835_564_782L,
+ 8_942_832_835_564_782L,
+ 6_965_949_469_487_146L,
+ 6_965_949_469_487_146L,
+ 6_965_949_469_487_146L,
+ 7_487_252_720_986_826L,
+ 5_592_117_679_628_511L,
+ 8_887_055_249_355_788L,
+ 6_994_187_472_632_449L,
+ 8_797_576_579_012_143L,
+ 7_363_326_733_505_337L,
+ 8_549_497_411_294_502L,
+ };
+
+ private static final int[] PaxsonExponents = {
+ -342,
+ -824,
+ 237,
+ 72,
+ 99,
+ 726,
+ -456,
+ -57,
+ 376,
+ 377,
+ 93,
+ 710,
+ 709,
+ 117,
+ -1,
+ -707,
+ -381,
+ 721,
+ -828,
+ -345,
+ 202,
+ -473,
+
+ 952,
+ 535,
+ 534,
+ -957,
+ -144,
+ 363,
+ -169,
+ -853,
+ -780,
+ -383,
+ -384,
+ -385,
+ -249,
+ -250,
+ -251,
+ 548,
+ 164,
+ 665,
+ 690,
+ 588,
+ 272,
+ -448,
+ };
+
+ private static void testPaxson() {
+ for (int i = 0; i < PaxsonSignificands.length; ++i) {
+ toDec(scalb(PaxsonSignificands[i], PaxsonExponents[i]));
+ }
+ }
+
+ /*
+ Tests all integers of the form yx_xxx_000_000_000_000_000, y != 0.
+ These are all exact doubles.
+ */
+ private static void testLongs() {
+ for (int i = 10_000; i < 100_000; ++i) {
+ toDec(i * 1e15);
+ }
+ }
+
+ /*
+ Tests all integers up to 100_000.
+ These are all exact doubles.
+ */
+ private static void testInts() {
+ for (int i = 0; i <= 1_000_000; ++i) {
+ toDec(i);
+ }
+ }
+
+ /*
+ Random doubles over the whole range
+ */
+ private static void testRandom() {
+ Random r = new Random();
+ for (int i = 0; i < 1_000_000; ++i) {
+ toDec(longBitsToDouble(r.nextLong()));
+ }
+ }
+
+ /*
+ Random doubles over the integer range [0, 10^15).
+ These integers are all exact doubles.
+ */
+ private static void testRandomUnit() {
+ Random r = new Random();
+ for (int i = 0; i < 100_000; ++i) {
+ toDec(r.nextLong() % 1_000_000_000_000_000L);
+ }
+ }
+
+ /*
+ Random doubles over the range [0, 10^15) as "multiples" of 1e-3
+ */
+ private static void testRandomMilli() {
+ Random r = new Random();
+ for (int i = 0; i < 100_000; ++i) {
+ toDec(r.nextLong() % 1_000_000_000_000_000_000L / 1e3);
+ }
+ }
+
+ /*
+ Random doubles over the range [0, 10^15) as "multiples" of 1e-6
+ */
+ private static void testRandomMicro() {
+ Random r = new Random();
+ for (int i = 0; i < 100_000; ++i) {
+ toDec((r.nextLong() & 0x7FFF_FFFF_FFFF_FFFFL) / 1e6);
+ }
+ }
+
+ public static void main(String[] args) {
+ testExtremeValues();
+ testSomeAnomalies();
+ testPowersOf2();
+ testPowersOf10();
+ testPaxson();
+ testInts();
+ testLongs();
+ testRandom();
+ testRandomUnit();
+ testRandomMilli();
+ testRandomMicro();
+ }
+
+}
diff --git a/test/jdk/java/lang/Floating/DoubleToStringChecker.java
b/test/jdk/java/lang/Floating/DoubleToStringChecker.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/DoubleToStringChecker.java
@@ -0,0 +1,91 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License
version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.math.BigDecimal;
+
+/**
+ * @author Raffaello Giulietti
+ */
+class DoubleToStringChecker extends StringChecker {
+
+ private double v;
+
+ DoubleToStringChecker(double v, String s) {
+ super(s);
+ this.v = v;
+ }
+
+ @Override
+ BigDecimal toBigDecimal() {
+ return new BigDecimal(v);
+ }
+
+ @Override
+ boolean recovers(BigDecimal b) {
+ return b.doubleValue() == v;
+ }
+
+ @Override
+ boolean recovers(String s) {
+ return Double.parseDouble(s) == v;
+ }
+
+ @Override
+ int maxExp() {
+ return 309;
+ }
+
+ @Override
+ int minExp() {
+ return -323;
+ }
+
+ @Override
+ int maxLen10() {
+ return 17;
+ }
+
+ @Override
+ boolean isZero() {
+ return v == 0;
+ }
+
+ @Override
+ boolean isInfinity() {
+ return v == Double.POSITIVE_INFINITY;
+ }
+
+ @Override
+ void invert() {
+ v = -v;
+ }
+
+ @Override
+ boolean isNegative() {
+ return Double.doubleToRawLongBits(v) < 0;
+ }
+
+ @Override
+ boolean isNaN() {
+ return v != v;
+ }
+
+}
diff --git a/test/jdk/java/lang/Floating/FloatToDecString.java
b/test/jdk/java/lang/Floating/FloatToDecString.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/FloatToDecString.java
@@ -0,0 +1,144 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License
version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.util.Random;
+
+import static java.lang.Float.*;
+
+/*
+ * @test
+
+ * @author Raffaello Giulietti
+ */
+public class FloatToDecString {
+
+ private static final boolean FAILURE_THROWS_EXCEPTION = true;
+
+ private static void assertTrue(boolean ok, float v, String s) {
+ if (ok) {
+ return;
+ }
+ String message = "Float::toString applied to " +
+ "Float.intBitsToFloat(" +
+ "0x" + Integer.toHexString(floatToRawIntBits(v)) +
+ ")" +
+ " returns " +
+ "\"" + s + "\"" +
+ ", which is not correct according to the specification.";
+ if (FAILURE_THROWS_EXCEPTION) {
+ throw new RuntimeException(message);
+ }
+ System.err.println(message);
+ }
+
+ private static void toDec(float v) {
+ String s = Float.toString(v);
+ assertTrue(new FloatToStringChecker(v, s).isOK(), v, s);
+ }
+
+ /*
+ MIN_NORMAL is incorrectly rendered by the JDK.
+ */
+ private static void testExtremeValues() {
+ toDec(NEGATIVE_INFINITY);
+ toDec(-MAX_VALUE);
+ toDec(-MIN_NORMAL);
+ toDec(-MIN_VALUE);
+ toDec(-0.0f);
+ toDec(0.0f);
+ toDec(MIN_VALUE);
+ toDec(MIN_NORMAL);
+ toDec(MAX_VALUE);
+ toDec(POSITIVE_INFINITY);
+ toDec(NaN);
+ /*
+ Quiet NaNs have the most significant bit of the mantissa as 1,
+ while signaling NaNs have it as 0.
+ Exercise 4 combinations of quiet/signaling NaNs and
+ "positive/negative" NaNs.
+ */
+ toDec(intBitsToFloat(0x7FC0_0001));
+ toDec(intBitsToFloat(0x7F80_0001));
+ toDec(intBitsToFloat(0xFFC0_0001));
+ toDec(intBitsToFloat(0xFF80_0001));
+ }
+
+ /*
+ Many "powers of 10" are incorrectly rendered by the JDK.
+ The rendering is either too long or it is not the closest decimal.
+ */
+ private static void testPowersOf10() {
+ for (int e = -44; e <= 39; ++e) {
+ toDec(parseFloat("1e" + e));
+ }
+ }
+
+ /*
+ Many powers of 2 are incorrectly rendered by the JDK.
+ The rendering is either too long or it is not the closest decimal.
+ */
+ private static void testPowersOf2() {
+ for (float v = MIN_VALUE; v <= MAX_VALUE; v *= 2.0) {
+ toDec(v);
+ }
+ }
+
+ /*
+ Tests all integers up to 1_000_000.
+ These are all exact floats.
+ */
+ private static void testInts() {
+ for (int i = 0; i <= 1_000_000; ++i) {
+ toDec(i);
+ }
+ }
+
+ /*
+ Random floats over the whole range.
+ */
+ private static void testRandom() {
+ Random r = new Random();
+ for (int i = 0; i < 1_000_000; ++i) {
+ toDec(intBitsToFloat(r.nextInt()));
+ }
+ }
+
+ /*
+ All, really all, possible floats. Takes between 90 and 120 minutes.
+ */
+ private static void testAll() {
+ int bits = Integer.MIN_VALUE;
+ for (; bits < Integer.MAX_VALUE; ++bits) {
+ toDec(Float.intBitsToFloat(bits));
+ }
+ toDec(Float.intBitsToFloat(bits));
+ }
+
+ public static void main(String[] args) {
+// testAll();
+ testExtremeValues();
+ testPowersOf2();
+ testPowersOf10();
+ testInts();
+ testRandom();
+ }
+
+}
diff --git a/test/jdk/java/lang/Floating/FloatToStringChecker.java
b/test/jdk/java/lang/Floating/FloatToStringChecker.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/FloatToStringChecker.java
@@ -0,0 +1,91 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License
version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.math.BigDecimal;
+
+/**
+ * @author Raffaello Giulietti
+ */
+class FloatToStringChecker extends StringChecker {
+
+ private float v;
+
+ FloatToStringChecker(float v, String s) {
+ super(s);
+ this.v = v;
+ }
+
+ @Override
+ BigDecimal toBigDecimal() {
+ return new BigDecimal(v);
+ }
+
+ @Override
+ boolean recovers(BigDecimal b) {
+ return b.floatValue() == v;
+ }
+
+ @Override
+ boolean recovers(String s) {
+ return Float.parseFloat(s) == v;
+ }
+
+ @Override
+ int maxExp() {
+ return 39;
+ }
+
+ @Override
+ int minExp() {
+ return -44;
+ }
+
+ @Override
+ int maxLen10() {
+ return 9;
+ }
+
+ @Override
+ boolean isZero() {
+ return v == 0;
+ }
+
+ @Override
+ boolean isInfinity() {
+ return v == Float.POSITIVE_INFINITY;
+ }
+
+ @Override
+ void invert() {
+ v = -v;
+ }
+
+ @Override
+ boolean isNegative() {
+ return Float.floatToRawIntBits(v) < 0;
+ }
+
+ @Override
+ boolean isNaN() {
+ return v != v;
+ }
+
+}
diff --git a/test/jdk/java/lang/Floating/StringChecker.java
b/test/jdk/java/lang/Floating/StringChecker.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/StringChecker.java
@@ -0,0 +1,348 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License
version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.io.IOException;
+import java.io.StringReader;
+import java.math.BigDecimal;
+
+/**
+ * @author Raffaello Giulietti
+ */
+abstract class StringChecker {
+
+ private String s;
+ private long c;
+ private int q;
+ private int len10;
+
+ StringChecker(String s) {
+ this.s = s;
+ }
+
+ /*
+ Returns whether s syntactically meets the expected output of
+ Double::toString. It is restricted to finite positive outputs.
+ It is an unusually long method but rather straightforward, too.
+ Many conditionals could be merged, but KISS here.
+ */
+ private boolean parse() {
+ try {
+ // first determine interesting boundaries in the string
+ StringReader r = new StringReader(s);
+ int ch = r.read();
+
+ int i = 0;
+ while (ch == '0') {
+ ++i;
+ ch = r.read();
+ }
+ // i is just after zeroes starting the integer
+
+ int p = i;
+ while ('0' <= ch && ch <= '9') {
+ c = 10 * c + (ch - '0');
+ if (c < 0) {
+ return false;
+ }
+ ++len10;
+ ++p;
+ ch = r.read();
+ }
+ // p is just after digits ending the integer
+
+ int fz = p;
+ if (ch == '.') {
+ ++fz;
+ ch = r.read();
+ }
+ // fz is just after a decimal '.'
+
+ int f = fz;
+ while (ch == '0') {
+ c = 10 * c + (ch - '0');
+ if (c < 0) {
+ return false;
+ }
+ ++len10;
+ ++f;
+ ch = r.read();
+ }
+ // f is just after zeroes starting the fraction
+
+ if (c == 0) {
+ len10 = 0;
+ }
+ int x = f;
+ while ('0' <= ch && ch <= '9') {
+ c = 10 * c + (ch - '0');
+ if (c < 0) {
+ return false;
+ }
+ ++len10;
+ ++x;
+ ch = r.read();
+ }
+ // x is just after digits ending the fraction
+
+ int g = x;
+ if (ch == 'E') {
+ ++g;
+ ch = r.read();
+ }
+ // g is just after an exponent indicator 'E'
+
+ int ez = g;
+ if (ch == '-') {
+ ++ez;
+ ch = r.read();
+ }
+ // ez is just after a '-' sign in the exponent
+
+ int e = ez;
+ while (ch == '0') {
+ ++e;
+ ch = r.read();
+ }
+ // e is just after zeroes starting the exponent
+
+ int z = e;
+ while ('0' <= ch && ch <= '9') {
+ q = 10 * q + (ch - '0');
+ if (q < 0) {
+ return false;
+ }
+ ++z;
+ ch = r.read();
+ }
+ // z is just after digits ending the exponent
+
+ // No other char after the number
+ if (z != s.length()) {
+ return false;
+ }
+
+ // The integer must be present
+ if (p == 0) {
+ return false;
+ }
+
+ // The decimal '.' must be present
+ if (fz == p) {
+ return false;
+ }
+
+ // The fraction must be present
+ if (x == fz) {
+ return false;
+ }
+
+ // The fraction is not 0 or it consists of exactly one 0
+ if (f == x && f - fz > 1) {
+ return false;
+ }
+
+ // Plain notation, no exponent
+ if (x == z) {
+ // At most one 0 starting the integer
+ if (i > 1) {
+ return false;
+ }
+
+ // If the integer is 0, at most 2 zeroes start the fraction
+ if (i == 1 && f - fz > 2) {
+ return false;
+ }
+
+ // The integer cannot have more than 7 digits
+ if (p > 7) {
+ return false;
+ }
+
+ q = fz - x;
+
+ // OK for plain notation
+ return true;
+ }
+
+ // Computerized scientific notation
+
+ // The integer has exactly one nonzero digit
+ if (i != 0 || p != 1) {
+ return false;
+ }
+
+ //
+ // There must be an exponent indicator
+ if (x == g) {
+ return false;
+ }
+
+ // There must be an exponent
+ if (ez == z) {
+ return false;
+ }
+
+ // The exponent must not start with zeroes
+ if (ez != e) {
+ return false;
+ }
+
+ if (g != ez) {
+ q = -q;
+ }
+
+ // The exponent must not lie in [-3, 7)
+ if (-3 <= q && q < 7) {
+ return false;
+ }
+
+ q += fz - x;
+
+ // OK for computerized scientific notation
+ return true;
+ } catch (IOException ex) {
+ // An IOException on a StringReader??? Please...
+ return false;
+ }
+ }
+
+ boolean isOK() {
+ if (isNaN()) {
+ return s.equals("NaN");
+ }
+ if (isNegative()) {
+ if (s.isEmpty() || s.charAt(0) != '-') {
+ return false;
+ }
+ invert();
+ s = s.substring(1);
+ }
+ if (isInfinity()) {
+ return s.equals("Infinity");
+ }
+ if (isZero()) {
+ return s.equals("0.0");
+ }
+ if (!parse()) {
+ return false;
+ }
+ if (len10 < 2) {
+ c *= 10;
+ q -= 1;
+ len10 += 1;
+ }
+ if (2 > len10 || len10 > maxLen10()) {
+ return false;
+ }
+
+ // The exponent is bounded
+ if (minExp() > q + len10 || q + len10 > maxExp()) {
+ return false;
+ }
+
+ // s must recover v
+ try {
+ if (!recovers(s)) {
+ return false;
+ }
+ } catch (NumberFormatException e) {
+ return false;
+ }
+
+ // Get rid of trailing zeroes, still ensuring at least 2 digits
+ while (len10 > 2 && c % 10 == 0) {
+ c /= 10;
+ q += 1;
+ len10 -= 1;
+ }
+
+ if (len10 > 2) {
+ // Try with a shorter number less than v...
+ if (recovers(BigDecimal.valueOf(c / 10, -q - 1))) {
+ return false;
+ }
+
+ // ... and with a shorter number greater than v
+ if (recovers(BigDecimal.valueOf(c / 10 + 1, -q - 1))) {
+ return false;
+ }
+ }
+
+ // Try with the decimal predecessor...
+ BigDecimal dp = c == 10 ?
+ BigDecimal.valueOf(99, -q + 1) :
+ BigDecimal.valueOf(c - 1, -q);
+ if (recovers(dp)) {
+ BigDecimal bv = toBigDecimal();
+ BigDecimal deltav = bv.subtract(BigDecimal.valueOf(c, -q));
+ if (deltav.signum() >= 0) {
+ return true;
+ }
+ BigDecimal delta = dp.subtract(bv);
+ if (delta.signum() >= 0) {
+ return false;
+ }
+ int cmp = deltav.compareTo(delta);
+ return cmp > 0 || cmp == 0 && (c & 0x1) == 0;
+ }
+
+ // ... and with the decimal successor
+ BigDecimal ds = BigDecimal.valueOf(c + 1, -q);
+ if (recovers(ds)) {
+ BigDecimal bv = toBigDecimal();
+ BigDecimal deltav = bv.subtract(BigDecimal.valueOf(c, -q));
+ if (deltav.signum() <= 0) {
+ return true;
+ }
+ BigDecimal delta = ds.subtract(bv);
+ if (delta.signum() <= 0) {
+ return false;
+ }
+ int cmp = deltav.compareTo(delta);
+ return cmp < 0 || cmp == 0 && (c & 0x1) == 0;
+ }
+
+ return true;
+ }
+
+ abstract BigDecimal toBigDecimal();
+
+ abstract boolean recovers(BigDecimal b);
+
+ abstract boolean recovers(String s);
+
+ abstract int maxExp();
+
+ abstract int minExp();
+
+ abstract int maxLen10();
+
+ abstract boolean isZero();
+
+ abstract boolean isInfinity();
+
+ abstract void invert();
+
+ abstract boolean isNegative();
+
+ abstract boolean isNaN();
+
+}
-------------- next part --------------
# HG changeset patch
# User lello
# Date 1537948169 -7200
# Wed Sep 26 09:49:29 2018 +0200
# Node ID 6bd9d2c45440c578b93d2f07e5eaea73928be4d5
# Parent 5f931e3e7a63b550d832d2624db32033b875c720
Patches to fix JDK-4511638
diff --git a/src/java.base/share/classes/java/lang/Double.java b/src/java.base/share/classes/java/lang/Double.java
--- a/src/java.base/share/classes/java/lang/Double.java
+++ b/src/java.base/share/classes/java/lang/Double.java
@@ -25,6 +25,7 @@
package java.lang;
+import jdk.internal.math.DoubleToDecimal;
import jdk.internal.math.FloatingDecimal;
import jdk.internal.math.DoubleConsts;
import jdk.internal.HotSpotIntrinsicCandidate;
@@ -139,69 +140,108 @@
public static final Class<Double> TYPE = (Class<Double>) Class.getPrimitiveClass("double");
/**
- * Returns a string representation of the {@code double}
- * argument. All characters mentioned below are ASCII characters.
- * <ul>
- * <li>If the argument is NaN, the result is the string
- * "{@code NaN}".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is negative,
- * the first character of the result is '{@code -}'
- * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
- * appears in the result. As for the magnitude <i>m</i>:
+ * Returns a string rendering of the {@code double} argument.
+ *
+ * <p>The characters of the result are all drawn from the ASCII set.
* <ul>
- * <li>If <i>m</i> is infinity, it is represented by the characters
- * {@code "Infinity"}; thus, positive infinity produces the result
- * {@code "Infinity"} and negative infinity produces the result
- * {@code "-Infinity"}.
+ * <li> Any NaN, whether quiet or signaling, is rendered symbolically
+ * as {@code "NaN"}, regardless of the sign bit.
+ * <li> The infinities +∞ and -∞ are rendered as
+ * {@code "Infinity"} and {@code "-Infinity"}, respectively.
+ * <li> The positive and negative zeroes are rendered as
+ * {@code "0.0"} and {@code "-0.0"}, respectively.
+ * <li> Otherwise {@code v} is finite and non-zero.
+ * It is rendered in two stages:
+ * <ul>
+ * <li> <em>Selection of a decimal</em>: A well-specified non-zero
+ * decimal <i>d</i> is selected to represent {@code v}.
+ * <li> <em>Formatting as a string</em>: The decimal <i>d</i> is
+ * formatted as a string, either in plain or in computerized
+ * scientific notation, depending on its value.
+ * </ul>
+ * </ul>
*
- * <li>If <i>m</i> is zero, it is represented by the characters
- * {@code "0.0"}; thus, negative zero produces the result
- * {@code "-0.0"} and positive zero produces the result
- * {@code "0.0"}.
- *
- * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
- * than 10<sup>7</sup>, then it is represented as the integer part of
- * <i>m</i>, in decimal form with no leading zeroes, followed by
- * '{@code .}' ({@code '\u005Cu002E'}), followed by one or
- * more decimal digits representing the fractional part of <i>m</i>.
+ * <p>The selected decimal <i>d</i> has a length <i>n</i> if it can be
+ * written as <i>d</i> = <i>c</i>·10<sup><i>q</i></sup> for some
+ * integers <i>q</i> and <i>c</i> meeting 10<sup><i>n</i>-1</sup> ≤
+ * |<i>c</i>| < 10<sup><i>n</i></sup>. It has all the following
+ * properties:
+ * <ul>
+ * <li> It rounds to {@code v} according to the usual round-to-closest
+ * rule of IEEE 754 floating-point arithmetic.
+ * <li> Among the decimals above, it has a length of 2 or more.
+ * <li> Among all such decimals, it is one of those with the shortest
+ * length.
+ * <li> Among the latter ones, it is the one closest to {@code v}. Or
+ * if there are two that are equally close to {@code v}, it is the one
+ * whose least significant digit is even.
+ * </ul>
+ * More formally, let <i>d'</i> = <i>c'</i>·10<sup><i>q'</i></sup>
+ * ≠ <i>d</i> be any other decimal that rounds to {@code v} according to
+ * IEEE 754 and of a length <i>n'</i>. Then:
+ * <ul>
+ * <li> either <i>n'</i> = 1, thus <i>d'</i> is too short;
+ * <li> or <i>n'</i> > <i>n</i>, thus <i>d'</i> is too long;
+ * <li> or <i>n'</i> = <i>n</i> and
+ * <ul>
+ * <li> either |<i>d</i> - {@code v}| < |<i>d'</i> - {@code v}|:
+ * thus <i>d'</i> is farther from {@code v};
+ * <li> or |<i>d</i> - {@code v}| = |<i>d'</i> - {@code v}| and
+ * <i>c</i> is even while <i>c'</i> is odd
+ * </ul>
+ * </ul>
*
- * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
- * equal to 10<sup>7</sup>, then it is represented in so-called
- * "computerized scientific notation." Let <i>n</i> be the unique
- * integer such that 10<sup><i>n</i></sup> ≤ <i>m</i> {@literal <}
- * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
- * mathematically exact quotient of <i>m</i> and
- * 10<sup><i>n</i></sup> so that 1 ≤ <i>a</i> {@literal <} 10. The
- * magnitude is then represented as the integer part of <i>a</i>,
- * as a single decimal digit, followed by '{@code .}'
- * ({@code '\u005Cu002E'}), followed by decimal digits
- * representing the fractional part of <i>a</i>, followed by the
- * letter '{@code E}' ({@code '\u005Cu0045'}), followed
- * by a representation of <i>n</i> as a decimal integer, as
- * produced by the method {@link Integer#toString(int)}.
- * </ul>
- * </ul>
- * How many digits must be printed for the fractional part of
- * <i>m</i> or <i>a</i>? There must be at least one digit to represent
- * the fractional part, and beyond that as many, but only as many, more
- * digits as are needed to uniquely distinguish the argument value from
- * adjacent values of type {@code double}. That is, suppose that
- * <i>x</i> is the exact mathematical value represented by the decimal
- * representation produced by this method for a finite nonzero argument
- * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
- * to <i>x</i>; or if two {@code double} values are equally close
- * to <i>x</i>, then <i>d</i> must be one of them and the least
- * significant bit of the significand of <i>d</i> must be {@code 0}.
+ * <p>The selected decimal <i>d</i> is then formatted as a string.
+ * If <i>d</i> < 0, the first character of the string is the sign
+ * '{@code -}'. Let |<i>d</i>| = <i>m</i>·10<sup><i>k</i></sup>,
+ * for the unique pair of integer <i>k</i> and real <i>m</i> meeting
+ * 1 ≤ <i>m</i> < 10. Also, let the decimal expansion of <i>m</i> be
+ * <i>m</i><sub>1</sub> . <i>m</i><sub>2</sub> <!--
+ * -->… <i>m</i><sub><i>i</i></sub>,
+ * with <i>i</i> ≥ 1 and <i>m</i><sub><i>i</i></sub> ≠ 0.
+ * <ul>
+ * <li>Case -3 ≤ k < 0: |<i>d</i>| is formatted as
+ * 0 . 0…0<i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>,
+ * where there are exactly -<i>k</i> leading zeroes before
+ * <i>m</i><sub>1</sub>, including the zero to the left of the
+ * decimal point; for example, {@code "0.01234"}.
+ * <li>Case 0 ≤ <i>k</i> < 7:
+ * <ul>
+ * <li>Subcase <i>i</i> < <i>k</i> + 2:
+ * |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>0…0 . 0,
+ * where there are exactly <i>k</i> + 2 - <i>i</i> trailing zeroes
+ * after <i>m</i><sub><i>i</i></sub>, including the zero to the
+ * right of the decimal point; for example, {@code "1200.0"}.
+ * <li>Subcase <i>i</i> ≥ <i>k</i> + 2:
+ * |<i>d</i>| is formatted as <i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>k</i>+1</sub> . <!--
+ * --><i>m</i><sub><i>k</i>+2</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>; for example, {@code "1234.32"}.
+ * </ul>
+ * <li>Case <i>k</i> < -3 or <i>k</i> ≥ 7:
+ * computerized scientific notation is used to format |<i>d</i>|,
+ * by combining <i>m</i> and <i>k</i> separated by the exponent
+ * indicator '{@code E}'. The exponent <i>k</i> is formatted as in
+ * {@link Integer#toString(int)}.
+ * <ul>
+ * <li>Subcase <i>i</i> = 1: |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub> . 0E<i>k</i>;
+ * for example, {@code "2.0E23"}.
+ * <li>Subcase <i>i</i> > 1: |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub> . <i>m</i><sub>2</sub><!--
+ * -->…<i>m</i><sub><i>i</i></sub>E<i>k</i>;
+ * for example, {@code "1.234E-32"}.
+ * </ul>
+ * </ul>
*
- * <p>To create localized string representations of a floating-point
- * value, use subclasses of {@link java.text.NumberFormat}.
- *
- * @param d the {@code double} to be converted.
- * @return a string representation of the argument.
+ * @param v the {@code double} to be rendered.
+ * @return a string rendering of the argument.
*/
- public static String toString(double d) {
- return FloatingDecimal.toJavaFormatString(d);
+ public static String toString(double v) {
+ return DoubleToDecimal.toString(v);
}
/**
diff --git a/src/java.base/share/classes/java/lang/Float.java b/src/java.base/share/classes/java/lang/Float.java
--- a/src/java.base/share/classes/java/lang/Float.java
+++ b/src/java.base/share/classes/java/lang/Float.java
@@ -25,6 +25,7 @@
package java.lang;
+import jdk.internal.math.FloatToDecimal;
import jdk.internal.math.FloatingDecimal;
import jdk.internal.HotSpotIntrinsicCandidate;
@@ -136,73 +137,107 @@
public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");
/**
- * Returns a string representation of the {@code float}
- * argument. All characters mentioned below are ASCII characters.
+ * Returns a string rendering of the {@code float} argument.
+ *
+ * <p>The characters of the result are all drawn from the ASCII set.
* <ul>
- * <li>If the argument is NaN, the result is the string
- * "{@code NaN}".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is
- * negative, the first character of the result is
- * '{@code -}' ({@code '\u005Cu002D'}); if the sign is
- * positive, no sign character appears in the result. As for
- * the magnitude <i>m</i>:
+ * <li> Any NaN, whether quiet or signaling, is rendered symbolically
+ * as {@code "NaN"}, regardless of the sign bit.
+ * <li> The infinities +∞ and -∞ are rendered as
+ * {@code "Infinity"} and {@code "-Infinity"}, respectively.
+ * <li> The positive and negative zeroes are rendered as
+ * {@code "0.0"} and {@code "-0.0"}, respectively.
+ * <li> Otherwise {@code v} is finite and non-zero.
+ * It is rendered in two stages:
+ * <ul>
+ * <li> <em>Selection of a decimal</em>: A well-specified non-zero
+ * decimal <i>d</i> of finite length is selected to represent
+ * {@code v}.
+ * <li> <em>Formatting as a string</em>: The decimal <i>d</i> is
+ * formatted as a string, either in plain or in computerized
+ * scientific notation, depending on its value.
+ * </ul>
+ * </ul>
+ *
+ * <p>A number <i>d</i> is a decimal of finite length if and only if it has
+ * the form <i>d</i> = <i>c</i>·10<sup><i>q</i></sup> for some
+ * integers <i>c</i> and <i>q</i>. It has a length <i>n</i> if
+ * 10<sup><i>n</i>-1</sup> ≤ |<i>c</i>| < 10<sup><i>n</i></sup>.
+ * <p>The selected decimal <i>d</i> has all the following properties:
+ * <ul>
+ * <li> It rounds to {@code v} according to the usual round-to-closest
+ * rule of IEEE 754 floating-point arithmetic.
+ * <li> It has a shortest length <i>n</i> ≥ 2.
+ * <li> It is the decimal closest to {@code v} among those meeting the
+ * previous properties.
+ * </ul>
+ * More formally, let <i>d'</i> = <i>c'</i>·10<sup><i>q'</i></sup>
+ * ≠ <i>d</i> be another decimal that also rounds to {@code v} according
+ * to IEEE 754 and with a length <i>n'</i>. Then:
* <ul>
- * <li>If <i>m</i> is infinity, it is represented by the characters
- * {@code "Infinity"}; thus, positive infinity produces
- * the result {@code "Infinity"} and negative infinity
- * produces the result {@code "-Infinity"}.
- * <li>If <i>m</i> is zero, it is represented by the characters
- * {@code "0.0"}; thus, negative zero produces the result
- * {@code "-0.0"} and positive zero produces the result
- * {@code "0.0"}.
- * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
- * less than 10<sup>7</sup>, then it is represented as the
- * integer part of <i>m</i>, in decimal form with no leading
- * zeroes, followed by '{@code .}'
- * ({@code '\u005Cu002E'}), followed by one or more
- * decimal digits representing the fractional part of
- * <i>m</i>.
- * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
- * equal to 10<sup>7</sup>, then it is represented in
- * so-called "computerized scientific notation." Let <i>n</i>
- * be the unique integer such that 10<sup><i>n</i> </sup>≤
- * <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
- * be the mathematically exact quotient of <i>m</i> and
- * 10<sup><i>n</i></sup> so that 1 ≤ <i>a</i> {@literal <} 10.
- * The magnitude is then represented as the integer part of
- * <i>a</i>, as a single decimal digit, followed by
- * '{@code .}' ({@code '\u005Cu002E'}), followed by
- * decimal digits representing the fractional part of
- * <i>a</i>, followed by the letter '{@code E}'
- * ({@code '\u005Cu0045'}), followed by a representation
- * of <i>n</i> as a decimal integer, as produced by the
- * method {@link java.lang.Integer#toString(int)}.
+ * <li> <i>n'</i> = 1 (<i>d'</i> is too short) or
+ * <li> <i>n'</i> > <i>n</i> (<i>d'</i> is too long) or
+ * <li> <i>n'</i> = <i>n</i> and
+ * <ul>
+ * <li> |<i>d</i> - {@code v}| < |<i>d'</i> - {@code v}|
+ * (<i>d'</i> is farther)
+ * <li> |<i>d</i> - {@code v}| = |<i>d'</i> - {@code v}| and
+ * <i>c</i> is even while <i>c'</i> is odd (tie-breaking rule when
+ * <i>d</i> and <i>d'</i> are equally close to {@code v})
+ * </ul>
+ * </ul>
*
- * </ul>
- * </ul>
- * How many digits must be printed for the fractional part of
- * <i>m</i> or <i>a</i>? There must be at least one digit
- * to represent the fractional part, and beyond that as many, but
- * only as many, more digits as are needed to uniquely distinguish
- * the argument value from adjacent values of type
- * {@code float}. That is, suppose that <i>x</i> is the
- * exact mathematical value represented by the decimal
- * representation produced by this method for a finite nonzero
- * argument <i>f</i>. Then <i>f</i> must be the {@code float}
- * value nearest to <i>x</i>; or, if two {@code float} values are
- * equally close to <i>x</i>, then <i>f</i> must be one of
- * them and the least significant bit of the significand of
- * <i>f</i> must be {@code 0}.
+ * <p>The selected decimal <i>d</i> is then formatted as a string.
+ * If <i>d</i> < 0, the first character of the string is the sign
+ * '{@code -}'. Let |<i>d</i>| = <i>m</i>·10<sup><i>k</i></sup>,
+ * for the unique pair of integer <i>k</i> and real <i>m</i> meeting
+ * 1 ≤ <i>m</i> < 10. Also, let the decimal expansion of <i>m</i> be
+ * <i>m</i><sub>1</sub> . <i>m</i><sub>2</sub> <!--
+ * -->… <i>m</i><sub><i>i</i></sub>,
+ * with <i>i</i> ≥ 1 and <i>m</i><sub><i>i</i></sub> ≠ 0.
+ * <ul>
+ * <li>Case -3 ≤ k < 0: |<i>d</i>| is formatted as
+ * 0 . 0…0<i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>,
+ * where there are exactly -<i>k</i> leading zeroes before
+ * <i>m</i><sub>1</sub>, including the zero to the left of the
+ * decimal point; for example, {@code "0.01234"}.
+ * <li>Case 0 ≤ <i>k</i> < 7:
+ * <ul>
+ * <li>Subcase <i>i</i> < <i>k</i> + 2:
+ * |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>0…0 . 0,
+ * where there are exactly <i>k</i> + 2 - <i>i</i> trailing zeroes
+ * after <i>m</i><sub><i>i</i></sub>, including the zero to the
+ * right of the decimal point; for example, {@code "1200.0"}.
+ * <li>Subcase <i>i</i> ≥ <i>k</i> + 2:
+ * |<i>d</i>| is formatted as <i>m</i><sub>1</sub>…<!--
+ * --><i>m</i><sub><i>k</i>+1</sub> . <!--
+ * --><i>m</i><sub><i>k</i>+2</sub>…<!--
+ * --><i>m</i><sub><i>i</i></sub>; for example, {@code "1234.32"}.
+ * </ul>
+ * <li>Case <i>k</i> < -3 or <i>k</i> ≥ 7:
+ * computerized scientific notation is used to format |<i>d</i>|,
+ * by combining <i>m</i> and <i>k</i> separated by the exponent
+ * indicator '{@code E}'. The exponent <i>k</i> is formatted as in
+ * {@link Integer#toString(int)}.
+ * <ul>
+ * <li>Subcase <i>i</i> = 1: |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub> . 0E<i>k</i>;
+ * for example, {@code "2.0E23"}.
+ * <li>Subcase <i>i</i> > 1: |<i>d</i>| is formatted as
+ * <i>m</i><sub>1</sub> . <i>m</i><sub>2</sub><!--
+ * -->…<i>m</i><sub><i>i</i></sub>E<i>k</i>;
+ * for example, {@code "1.234E-32"}.
+ * </ul>
+ * </ul>
*
- * <p>To create localized string representations of a floating-point
- * value, use subclasses of {@link java.text.NumberFormat}.
- *
- * @param f the float to be converted.
- * @return a string representation of the argument.
+ * @param v the {@code float} to be rendered.
+ * @return a string rendering of the argument.
*/
- public static String toString(float f) {
- return FloatingDecimal.toJavaFormatString(f);
+ public static String toString(float v) {
+ return FloatToDecimal.toString(v);
}
/**
diff --git a/src/java.base/share/classes/jdk/internal/math/DoubleToDecimal.java b/src/java.base/share/classes/jdk/internal/math/DoubleToDecimal.java
new file mode 100644
--- /dev/null
+++ b/src/java.base/share/classes/jdk/internal/math/DoubleToDecimal.java
@@ -0,0 +1,409 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+package jdk.internal.math;
+
+import static java.lang.Double.*;
+import static java.lang.Long.numberOfLeadingZeros;
+import static java.lang.Math.multiplyHigh;
+import static jdk.internal.math.MathUtils.*;
+
+/**
+ * This class exposes a method to render a {@code double} as a string.
+
+ * @author Raffaello Giulietti
+ */
+final public class DoubleToDecimal {
+
+ // Precision of normal values in bits.
+ private static final int P = 53;
+
+ // Length in bits of the exponent field.
+ private static final int W = (Double.SIZE - 1) - (P - 1);
+
+ // Minimum value of the exponent.
+ private static final int Q_MIN = (-1 << W - 1) - P + 3;
+
+ // Minimum value of the coefficient of a normal value.
+ private static final long C_MIN = 1L << P - 1;
+
+ // Mask to extract the IEEE 754-2008 biased exponent.
+ private static final int BQ_MASK = (1 << W) - 1;
+
+ // Mask to extract the IEEE 754-2008 fraction bits.
+ private static final long T_MASK = (1L << P - 1) - 1;
+
+ // H = min {n integer | 10^(n-1) > 2^P}
+ private static final int H = 17;
+
+ // used in the left-to-right extraction of the digits
+ private static final int LTR = 28;
+ private static final int MASK_LTR = (1 << LTR) - 1;
+
+ private static final long MASK_63 = (1L << Long.SIZE - 1) - 1;
+
+ // for thread-safety, each thread gets its own instance of this class
+ private static final ThreadLocal<DoubleToDecimal> threadLocal =
+ ThreadLocal.withInitial(DoubleToDecimal::new);
+
+ /*
+ Room for the longer of the forms
+ -ddddd.dddddddddddd H + 2 characters
+ -0.00ddddddddddddddddd H + 5 characters
+ -d.ddddddddddddddddE-eee H + 7 characters
+ where there are H digits d
+ */
+ private final char[] buf = new char[H + 7];
+
+ // index of rightmost valid character
+ private int index;
+
+ private DoubleToDecimal() {
+ }
+
+ /*
+ See Double::toString for javadoc.
+ */
+ public static String toString(double v) {
+ return threadLocalInstance().toDecimal(v);
+ }
+
+ private static DoubleToDecimal threadLocalInstance() {
+ return threadLocal.get();
+ }
+
+ private String toDecimal(double v) {
+ long bits = doubleToRawLongBits(v);
+ int bq = (int) (bits >>> P - 1) & BQ_MASK;
+ if (bq < BQ_MASK) {
+ index = -1;
+ if (bits < 0) {
+ append('-');
+ }
+ if (bq > 0) {
+ return toDecimal(Q_MIN - 1 + bq, C_MIN | bits & T_MASK);
+ }
+ if (bits == 0x0000_0000_0000_0000L) {
+ return "0.0";
+ }
+ if (bits == 0x8000_0000_0000_0000L) {
+ return "-0.0";
+ }
+ return toDecimal(Q_MIN, bits & T_MASK);
+ }
+ if (v != v) {
+ return "NaN";
+ }
+ if (v == POSITIVE_INFINITY) {
+ return "Infinity";
+ }
+ return "-Infinity";
+ }
+
+ // Let v = c * 2^q be the absolute value of the original double. Renders v.
+ private String toDecimal(int q, long c) {
+ /*
+ out = 0, if the boundaries of the rounding interval are included
+ out = 1, if they are excluded
+ d = 1 for even, d = 2 for uneven spacing around v.
+ v = cb * 2^qb
+ predecessor(v) = cbl * 2^qb
+ successor(v) = cbr * 2^qb
+ */
+ int out = (int) c & 0x1;
+
+ long cb;
+ long cbr;
+ long cbl;
+ int k;
+ int ord2alpha;
+ if (c != C_MIN | q == Q_MIN) {
+ cb = c << 1;
+ cbr = cb + 1;
+ k = flog10pow2(q);
+ ord2alpha = q + flog2pow10(-k) + 1;
+ } else {
+ cb = c << 2;
+ cbr = cb + 2;
+ k = flog10threeQuartersPow2(q);
+ ord2alpha = q + flog2pow10(-k);
+ }
+ cbl = cb - 1;
+ long mask = (1L << 63 - ord2alpha) - 1;
+ long threshold = 1L << 62 - ord2alpha;
+
+ // pow5 = pow51*2^63 + pow50
+ long pow51 = ceilPow5dHigh(-k);
+ long pow50 = ceilPow5dLow(-k);
+
+ // p = p2*2^126 + p1*2^63 + p0 and p = pow5 * cb
+ long x0 = pow50 * cb;
+ long x1 = multiplyHigh(pow50, cb);
+ long y0 = pow51 * cb;
+ long y1 = multiplyHigh(pow51, cb);
+ long z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ long p0 = x0 & MASK_63;
+ long p1 = z & MASK_63;
+ long p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vn = p2 << 1 + ord2alpha | p1 >>> 62 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vn |= 1;
+ }
+
+ // Similarly as above, with p = pow5 * cbl
+ x0 = pow50 * cbl;
+ x1 = multiplyHigh(pow50, cbl);
+ y0 = pow51 * cbl;
+ y1 = multiplyHigh(pow51, cbl);
+ z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ p0 = x0 & MASK_63;
+ p1 = z & MASK_63;
+ p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vnl = p2 << ord2alpha | p1 >>> 63 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vnl |= 1;
+ }
+
+ // Similarly as above, with p = pow5 * cbr
+ x0 = pow50 * cbr;
+ x1 = multiplyHigh(pow50, cbr);
+ y0 = pow51 * cbr;
+ y1 = multiplyHigh(pow51, cbr);
+ z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ p0 = x0 & MASK_63;
+ p1 = z & MASK_63;
+ p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vnr = p2 << ord2alpha | p1 >>> 63 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vnr |= 1;
+ }
+
+ long s = vn >> 2;
+ if (s >= 100) {
+ long s10 = s - s % 10;
+ long t10 = s10 + 10;
+ boolean uin10 = vnl + out <= s10 << 1;
+ boolean win10 = (t10 << 1) + out <= vnr;
+ if (uin10 | win10) {
+ if (!win10) {
+ return toChars(s10, k);
+ }
+ if (!uin10) {
+ return toChars(t10, k);
+ }
+ }
+ } else if (s < 10) {
+ /*
+ Special cases that need to be made artificially longer to meet
+ the specification
+ */
+ switch ((int) s) {
+ case 4: return toChars(49, -325); // 4.9 * 10^-324
+ case 9: return toChars(99, -325); // 9.9 * 10^-324
+ }
+ }
+ long t = s + 1;
+ boolean uin = vnl + out <= s << 1;
+ boolean win = (t << 1) + out <= vnr;
+ if (!win) {
+ return toChars(s, k);
+ }
+ if (!uin) {
+ return toChars(t, k);
+ }
+ long cmp = vn - (s + t << 1);
+ if (cmp < 0) {
+ return toChars(s, k);
+ }
+ if (cmp > 0) {
+ return toChars(t, k);
+ }
+ if ((s & 1) == 0) {
+ return toChars(s, k);
+ }
+ return toChars(t, k);
+ }
+
+ /*
+ The method formats the number f * 10^e
+
+ Division is avoided altogether by replacing it with multiplications
+ and shifts. This has a noticeable impact on performance.
+ For more in-depth readings, see for example
+ * Moeller & Granlund, "Improved division by invariant integers"
+ * ridiculous_fish, "Labor of Division (Episode III): Faster Unsigned
+ Division by Constants"
+
+ Also, once the quotient is known, the remainder is computed indirectly.
+ */
+ private String toChars(long f, int e) {
+ // Normalize f to lie in the f-independent interval [10^(H-1), 10^H)
+ int len10 = flog10pow2(Long.SIZE - numberOfLeadingZeros(f));
+ if (f >= pow10[len10]) {
+ len10 += 1;
+ }
+ // 10^(len10-1) <= f < 10^len10
+ f *= pow10[H - len10];
+ e += len10;
+
+ /*
+ Split the H = 17 digits of f into:
+ h = the most significant digit of f
+ m = the next 8 most significant digits of f
+ l = the last 8, least significant digits of f
+
+ Pictorially, the selected decimal to format as String is
+ 0.hmmmmmmmmllllllll * 10^e
+ Depending on the value of e, plain or computerized scientific notation
+ is used.
+ */
+ long hm = multiplyHigh(f, 48_357_032_784_585_167L) >>> 18;
+ int l = (int) (f - 100_000_000L * hm);
+ int h = (int) (hm * 1_441_151_881L >>> 57);
+ int m = (int) (hm - 100_000_000 * h);
+
+ /*
+ The left-to-right digits generation in toChars_* is inspired by
+ * Bouvier & Zimmermann, "Division-Free Binary-to-Decimal Conversion"
+ */
+ if (0 < e && e <= 7) {
+ return toChars_1(h, m, l, e);
+ }
+ if (-3 < e && e <= 0) {
+ return toChars_2(h, m, l, e);
+ }
+ return toChars_3(h, m, l, e);
+ }
+
+ // 0 < e <= 7: plain format without leading zeroes.
+ private String toChars_1(int h, int m, int l, int e) {
+ appendDigit(h);
+ // y = (m + 1) * 2^LTR / 100_000_000 - 1;
+ int y = (int) (multiplyHigh(
+ (long) (m + 1) << LTR,
+ 48_357_032_784_585_167L) >>> 18) - 1;
+ int t;
+ int i = 1;
+ for (; i < e; ++i) {
+ t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ append('.');
+ for (; i <= 8; ++i) {
+ t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ lowDigits(l);
+ return charsToString();
+ }
+
+ // -3 < e <= 0: plain format with leading zeroes.
+ private String toChars_2(int h, int m, int l, int e) {
+ appendDigit(0);
+ append('.');
+ for (; e < 0; ++e) {
+ appendDigit(0);
+ }
+ appendDigit(h);
+ append8Digits(m);
+ lowDigits(l);
+ return charsToString();
+ }
+
+ // -3 >= e | e > 7: computerized scientific notation
+ private String toChars_3(int h, int m, int l, int e) {
+ appendDigit(h);
+ append('.');
+ append8Digits(m);
+ lowDigits(l);
+ exponent(e - 1);
+ return charsToString();
+ }
+
+ private void lowDigits(int l) {
+ if (l != 0) {
+ append8Digits(l);
+ }
+ removeTrailingZeroes();
+ }
+
+ private void append8Digits(int v) {
+ // y = (v + 1) * 2^LTR / 100_000_000 - 1;
+ int y = (int) (multiplyHigh((long) (v + 1) << LTR,
+ 48_357_032_784_585_167L) >>> 18) - 1;
+ for (int i = 0; i < 8; ++i) {
+ int t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ }
+
+ private void removeTrailingZeroes() {
+ while (buf[index] == '0') {
+ --index;
+ }
+ if (buf[index] == '.') {
+ ++index;
+ }
+ }
+
+ private void exponent(int e) {
+ append('E');
+ if (e < 0) {
+ append('-');
+ e = -e;
+ }
+ if (e < 10) {
+ appendDigit(e);
+ return;
+ }
+ if (e < 100) {
+ // d = e / 10
+ int d = e * 205 >>> 11;
+ appendDigit(d);
+ appendDigit(e - 10 * d);
+ return;
+ }
+ // d = e / 100
+ int d = e * 1_311 >>> 17;
+ appendDigit(d);
+ e -= 100 * d;
+ // d = e / 10
+ d = e * 205 >>> 11;
+ appendDigit(d);
+ appendDigit(e - 10 * d);
+ }
+
+ private void append(int c) {
+ buf[++index] = (char) c;
+ }
+
+ private void appendDigit(int d) {
+ buf[++index] = (char) ('0' + d);
+ }
+
+ private String charsToString() {
+ return new String(buf, 0, index + 1);
+ }
+
+}
diff --git a/src/java.base/share/classes/jdk/internal/math/FloatToDecimal.java b/src/java.base/share/classes/jdk/internal/math/FloatToDecimal.java
new file mode 100644
--- /dev/null
+++ b/src/java.base/share/classes/jdk/internal/math/FloatToDecimal.java
@@ -0,0 +1,393 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+package jdk.internal.math;
+
+import static java.lang.Float.*;
+import static java.lang.Long.numberOfLeadingZeros;
+import static java.lang.Math.multiplyHigh;
+import static jdk.internal.math.MathUtils.*;
+
+/**
+ * This class exposes a method to render a {@code float} as a string.
+
+ * @author Raffaello Giulietti
+ */
+final public class FloatToDecimal {
+
+ // Precision of normal values in bits.
+ private static final int P = 24;
+
+ // Length in bits of the exponent field.
+ private static final int W = (Float.SIZE - 1) - (P - 1);
+
+ // Minimum value of the exponent.
+ private static final int Q_MIN = (-1 << W - 1) - P + 3;
+
+ // Minimum value of the coefficient of a normal value.
+ private static final int C_MIN = 1 << P - 1;
+
+ // Mask to extract the IEEE 754-2008 biased exponent.
+ private static final int BQ_MASK = (1 << W) - 1;
+
+ // Mask to extract the IEEE 754-2008 fraction bits.
+ private static final int T_MASK = (1 << P - 1) - 1;
+
+ // H = min {n integer | 10^(n-1) > 2^P}
+ private static final int H = 9;
+
+ // used in the left-to-right extraction of the digits
+ private static final int LTR = 28;
+ private static final int MASK_LTR = (1 << LTR) - 1;
+
+ private static final long MASK_63 = (1L << Long.SIZE - 1) - 1;
+
+ // for thread-safety, each thread gets its own instance of this class
+ private static final ThreadLocal<FloatToDecimal> threadLocal =
+ ThreadLocal.withInitial(FloatToDecimal::new);
+
+ /*
+ Room for the longer of the forms
+ -ddddd.dddd H + 2 characters
+ -0.00ddddddddd H + 5 characters
+ -d.ddddddddE-ee H + 6 characters
+ where there are H digits d
+ */
+ private final char[] buf = new char[H + 6];
+
+ // index of rightmost valid character
+ private int index;
+
+ private FloatToDecimal() {
+ }
+
+ /*
+ See Float::toString for javadoc.
+ */
+ public static String toString(float v) {
+ return threadLocalInstance().toDecimal(v);
+ }
+
+ private static FloatToDecimal threadLocalInstance() {
+ return threadLocal.get();
+ }
+
+ private String toDecimal(float v) {
+ int bits = floatToRawIntBits(v);
+ int bq = (bits >>> P - 1) & BQ_MASK;
+ if (bq < BQ_MASK) {
+ index = -1;
+ if (bits < 0) {
+ append('-');
+ }
+ if (bq > 0) {
+ return toDecimal(Q_MIN - 1 + bq, C_MIN | bits & T_MASK);
+ }
+ if (bits == 0x0000_0000) {
+ return "0.0";
+ }
+ if (bits == 0x8000_0000) {
+ return "-0.0";
+ }
+ return toDecimal(Q_MIN, bits & T_MASK);
+ }
+ if (v != v) {
+ return "NaN";
+ }
+ if (v == POSITIVE_INFINITY) {
+ return "Infinity";
+ }
+ return "-Infinity";
+ }
+
+ // Let v = c * 2^q be the absolute value of the original float. Renders v.
+ private String toDecimal(int q, int c) {
+ /*
+ out = 0, if the boundaries of the rounding interval are included
+ out = 1, if they are excluded
+ d = 1 for even, d = 2 for uneven spacing around v.
+ v = cb * 2^qb
+ predecessor(v) = cbl * 2^qb
+ successor(v) = cbr * 2^qb
+ */
+ int out = c & 0x1;
+
+ long cb;
+ long cbr;
+ long cbl;
+ int k;
+ int ord2alpha;
+ if (c != C_MIN | q == Q_MIN) {
+ cb = c << 1;
+ cbr = cb + 1;
+ k = flog10pow2(q);
+ ord2alpha = q + flog2pow10(-k) + 1;
+ } else {
+ cb = c << 2;
+ cbr = cb + 2;
+ k = flog10threeQuartersPow2(q);
+ ord2alpha = q + flog2pow10(-k);
+ }
+ cbl = cb - 1;
+ long mask = (1L << 63 - ord2alpha) - 1;
+ long threshold = 1L << 62 - ord2alpha;
+
+ // pow5 = pow51*2^63 + pow50
+ long pow51 = ceilPow5dHigh(-k);
+ long pow50 = ceilPow5dLow(-k);
+
+ // p = p2*2^126 + p1*2^63 + p0 and p = pow5 * cb
+ long x0 = pow50 * cb;
+ long x1 = multiplyHigh(pow50, cb);
+ long y0 = pow51 * cb;
+ long y1 = multiplyHigh(pow51, cb);
+ long z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ long p0 = x0 & MASK_63;
+ long p1 = z & MASK_63;
+ long p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vn = p2 << 1 + ord2alpha | p1 >>> 62 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vn |= 1;
+ }
+
+ // Similarly as above, with p = pow5 * cbl
+ x0 = pow50 * cbl;
+ x1 = multiplyHigh(pow50, cbl);
+ y0 = pow51 * cbl;
+ y1 = multiplyHigh(pow51, cbl);
+ z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ p0 = x0 & MASK_63;
+ p1 = z & MASK_63;
+ p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vnl = p2 << ord2alpha | p1 >>> 63 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vnl |= 1;
+ }
+
+ // Similarly as above, with p = pow5 * cbr
+ x0 = pow50 * cbr;
+ x1 = multiplyHigh(pow50, cbr);
+ y0 = pow51 * cbr;
+ y1 = multiplyHigh(pow51, cbr);
+ z = (x1 << 1 | x0 >>> 63) + (y0 & MASK_63);
+ p0 = x0 & MASK_63;
+ p1 = z & MASK_63;
+ p2 = (y1 << 1 | y0 >>> 63) + (z >>> 63);
+ long vnr = p2 << ord2alpha | p1 >>> 63 - ord2alpha;
+ if ((p1 & mask) != 0 || p0 >= threshold) {
+ vnr |= 1;
+ }
+
+ long s = vn >> 2;
+ if (s >= 100) {
+ long s10 = s - s % 10;
+ long t10 = s10 + 10;
+ boolean uin10 = vnl + out <= s10 << 1;
+ boolean win10 = (t10 << 1) + out <= vnr;
+ if (uin10 | win10) {
+ if (!win10) {
+ return toChars(s10, k);
+ }
+ if (!uin10) {
+ return toChars(t10, k);
+ }
+ }
+ } else if (s < 10) {
+ /*
+ Special cases that need to be made artificially longer to meet
+ the specification
+ */
+ switch ((int) s) {
+ case 1: return toChars(14, -46); // 1.4 * 10^-45
+ case 2: return toChars(28, -46); // 2.8 * 10^-45
+ case 4: return toChars(42, -46); // 4.2 * 10^-45
+ case 5: return toChars(56, -46); // 5.6 * 10^-45
+ case 7: return toChars(70, -46); // 7.0 * 10^-45
+ case 8: return toChars(84, -46); // 8.4 * 10^-45
+ case 9: return toChars(98, -46); // 9.8 * 10^-45
+ }
+ }
+ long t = s + 1;
+ boolean uin = vnl + out <= s << 1;
+ boolean win = (t << 1) + out <= vnr;
+ if (!win) {
+ return toChars(s, k);
+ }
+ if (!uin) {
+ return toChars(t, k);
+ }
+ long cmp = vn - (s + t << 1);
+ if (cmp < 0) {
+ return toChars(s, k);
+ }
+ if (cmp > 0) {
+ return toChars(t, k);
+ }
+ if ((s & 1) == 0) {
+ return toChars(s, k);
+ }
+ return toChars(t, k);
+ }
+
+ /*
+ The method formats the number f * 10^e
+
+ Division is avoided altogether by replacing it with multiplications
+ and shifts. This has a noticeable impact on performance.
+ For more in-depth readings, see for example
+ * Moeller & Granlund, "Improved division by invariant integers"
+ * ridiculous_fish, "Labor of Division (Episode III): Faster Unsigned
+ Division by Constants"
+
+ Also, once the quotient is known, the remainder is computed indirectly.
+ */
+ private String toChars(long f, int e) {
+ // Normalize f to lie in the f-independent interval [10^(H-1), 10^H)
+ int len10 = flog10pow2(Long.SIZE - numberOfLeadingZeros(f));
+ if (f >= pow10[len10]) {
+ len10 += 1;
+ }
+ // 10^(len10-1) <= f < 10^len10
+ f *= pow10[H - len10];
+ e += len10;
+
+ /*
+ Split the H = 9 digits of f into:
+ h = the most significant digit of f
+ l = the last 8, least significant digits of f
+
+ Pictorially, the selected decimal to format as String is
+ 0.hllllllll * 10^e
+ Depending on the value of e, plain or computerized scientific notation
+ is used.
+ */
+ int h = (int) (f * 1_441_151_881L >>> 57);
+ int l = (int) (f - 100_000_000 * h);
+
+ /*
+ The left-to-right digits generation in toChars_* is inspired by
+ * Bouvier & Zimmermann, "Division-Free Binary-to-Decimal Conversion"
+ */
+ if (0 < e && e <= 7) {
+ return toChars_1(h, l, e);
+ }
+ if (-3 < e && e <= 0) {
+ return toChars_2(h, l, e);
+ }
+ return toChars_3(h, l, e);
+ }
+
+ // 0 < e <= 7: plain format without leading zeroes.
+ private String toChars_1(int h, int l, int e) {
+ appendDigit(h);
+ // y = (l + 1) * 2^LTR / 100_000_000 - 1;
+ int y = (int) (multiplyHigh(
+ (long) (l + 1) << LTR,
+ 48_357_032_784_585_167L) >>> 18) - 1;
+ int t;
+ int i = 1;
+ for (; i < e; ++i) {
+ t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ append('.');
+ for (; i <= 8; ++i) {
+ t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ removeTrailingZeroes();
+ return charsToString();
+ }
+
+ // -3 < e <= 0: plain format with leading zeroes.
+ private String toChars_2(int h, int l, int e) {
+ appendDigit(0);
+ append('.');
+ for (; e < 0; ++e) {
+ appendDigit(0);
+ }
+ appendDigit(h);
+ append8Digits(l);
+ removeTrailingZeroes();
+ return charsToString();
+ }
+
+ // -3 >= e | e > 7: computerized scientific notation
+ private String toChars_3(int h, int l, int e) {
+ appendDigit(h);
+ append('.');
+ append8Digits(l);
+ removeTrailingZeroes();
+ exponent(e - 1);
+ return charsToString();
+ }
+
+ private void append8Digits(int v) {
+ // y = (v + 1) * 2^LTR / 100_000_000 - 1;
+ int y = (int) (multiplyHigh((long) (v + 1) << LTR,
+ 48_357_032_784_585_167L) >>> 18) - 1;
+ for (int i = 0; i < 8; ++i) {
+ int t = 10 * y;
+ appendDigit(t >>> LTR);
+ y = t & MASK_LTR;
+ }
+ }
+
+ private void removeTrailingZeroes() {
+ while (buf[index] == '0') {
+ --index;
+ }
+ if (buf[index] == '.') {
+ ++index;
+ }
+ }
+
+ private void exponent(int e) {
+ append('E');
+ if (e < 0) {
+ append('-');
+ e = -e;
+ }
+ if (e < 10) {
+ appendDigit(e);
+ return;
+ }
+ // d = e / 10
+ int d = e * 205 >>> 11;
+ appendDigit(d);
+ appendDigit(e - 10 * d);
+ }
+
+ private void append(int c) {
+ buf[++index] = (char) c;
+ }
+
+ private void appendDigit(int d) {
+ buf[++index] = (char) ('0' + d);
+ }
+
+ private String charsToString() {
+ return new String(buf, 0, index + 1);
+ }
+
+}
diff --git a/src/java.base/share/classes/jdk/internal/math/MathUtils.java b/src/java.base/share/classes/jdk/internal/math/MathUtils.java
new file mode 100644
--- /dev/null
+++ b/src/java.base/share/classes/jdk/internal/math/MathUtils.java
@@ -0,0 +1,775 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+package jdk.internal.math;
+
+/**
+ * @author Raffaello Giulietti
+ */
+final class MathUtils {
+
+ // C_10 = floor(log10(2) * 2^Q_10), A_10 = floor(log10(3/4) * 2^Q_10)
+ private static final int Q_10 = 41;
+ private static final long C_10 = 661_971_961_083L;
+ private static final long A_10 = -274_743_187_321L;
+
+ // C_2 = floor(log2(10) * 2^Q_2)
+ private static final int Q_2 = 38;
+ private static final long C_2 = 913_124_641_741L;
+
+ // The minimum exponent for ceilPow5dHigh(int)
+ private static final int MIN_EXP = -292;
+
+ private MathUtils() {
+ }
+
+ // pow10[i] = 10^i, 0 <= i <= H
+ static final long[] pow10 = {
+ 1L,
+ 10L,
+ 100L,
+ 1_000L,
+ 10_000L,
+ 100_000L,
+ 1_000_000L,
+ 10_000_000L,
+ 100_000_000L,
+ 1_000_000_000L,
+ 10_000_000_000L,
+ 100_000_000_000L,
+ 1_000_000_000_000L,
+ 10_000_000_000_000L,
+ 100_000_000_000_000L,
+ 1_000_000_000_000_000L,
+ 10_000_000_000_000_000L,
+ 100_000_000_000_000_000L,
+ };
+
+ /**
+ * Returns the unique integer <i>k</i> such that
+ * 10<sup><i>k</i></sup> ≤ 2<sup>{@code e}</sup>
+ * < 10<sup><i>k</i>+1</sup>.
+ * <p>
+ * The result is correct when |{@code e}| ≤ 5_456_721.
+ * Otherwise the result may or may not be correct.
+ *
+ * @param e The exponent of 2, which should meet
+ * |{@code e}| ≤ 5_456_721 for safe results.
+ * @return ⌊log<sub>10</sub>2<sup>{@code e}</sup>⌋.
+ */
+ static int flog10pow2(int e) {
+ return (int) (e * C_10 >> Q_10);
+ }
+
+ /**
+ * Returns the unique integer <i>k</i> such that
+ * 10<sup><i>k</i></sup> ≤ 3/4 · 2<sup>{@code e}</sup>
+ * < 10<sup><i>k</i>+1</sup>.
+ * <p>
+ * The result is correct when
+ * -2_956_395 ≤ |{@code e}| ≤ 2_500_325.
+ * Otherwise the result may or may not be correct.
+ *
+ * @param e The exponent of 2, which should meet
+ * -2_956_395 ≤ |{@code e}| ≤ 2_500_325 for safe results.
+ * @return ⌊log<sub>10</sub>(3/4 ·
+ * 2<sup>{@code e}</sup>)⌋.
+ */
+ static int flog10threeQuartersPow2(int e) {
+ return (int) ((e * C_10 + A_10) >> Q_10);
+ }
+
+ /**
+ * Returns the unique integer <i>k</i> such that
+ * 2<sup><i>k</i></sup> ≤ 10<sup>{@code e}</sup>
+ * < 2<sup><i>k</i>+1</sup>.
+ * <p>
+ * The result is correct when |{@code e}| ≤ 1_838_394.
+ * Otherwise the result may or may not be correct.
+ *
+ * @param e The exponent of 10, which should meet
+ * |{@code e}| ≤ 1_838_394 for safe results.
+ * @return ⌊log<sub>2</sub>10<sup>{@code e}</sup>⌋.
+ */
+ static int flog2pow10(int e) {
+ return (int) (e * C_2 >> Q_2);
+ }
+
+ /**
+ * Let 5<sup>{@code e}</sup> = <i>d</i> · 2<sup><i>r</i></sup>,
+ * for the unique pair of integer <i>r</i> and real <i>d</i> meeting
+ * 2<sup>125</sup> ≤ d < 2<sup>126</sup>.
+ * Further, let <i>c</i> = ⌈<i>d</i>⌉.
+ * Split <i>c</i> into the higher 63 bits <i>c</i><sub>1</sub> and
+ * the lower 63 bits <i>c</i><sub>0</sub>. Thus,
+ * <i>c</i><sub>1</sub> =
+ * ⌊<i>c</i> · 2<sup>-63</sup>⌋
+ * and
+ * <i>c</i><sub>0</sub> =
+ * <i>c</i> - <i>c</i><sub>1</sub> · 2<sup>63</sup>.
+ * <p>
+ * This method returns <i>c</i><sub>1</sub> while
+ * {@link #ceilPow5dLow(int)} returns <i>c</i><sub>0</sub>.
+ * <p>
+ * If needed, the exponent <i>r</i> can be computed as
+ * <i>r</i> = {@code flog2pow10(e) - e - 125}
+ * (see {@link #flog2pow10(int)}).
+ *
+ * @param e The exponent of 5,
+ * which must meet -292 ≤ {@code e} ≤ 324.
+ * @return <i>c</i><sub>1</sub> as described above.
+ */
+ static long ceilPow5dHigh(int e) {
+ return ceilPow5d[e - MIN_EXP << 1];
+ }
+
+ /**
+ * Returns <i>c</i><sub>0</sub> as described in {@link #ceilPow5dHigh(int)}.
+ *
+ * @param e The exponent of 5,
+ * which must meet -292 ≤ {@code e} ≤ 324.
+ * @return <i>c</i><sub>0</sub> as described in {@link #ceilPow5dHigh(int)}.
+ */
+ static long ceilPow5dLow(int e) {
+ return ceilPow5d[e - MIN_EXP << 1 | 1];
+ }
+
+ private static final long[] ceilPow5d = {
+ /* -292 */ 0x7FBB_D8FE_5F5E_6E27L, 0x497A_3A27_04EE_C3DFL,
+ /* -291 */ 0x4FD5_679E_FB9B_04D8L, 0x5DEC_6458_6315_3A6CL,
+ /* -290 */ 0x63CA_C186_BA81_C60EL, 0x7567_7D6E_7BDA_8906L,
+ /* -289 */ 0x7CBD_71E8_6922_3792L, 0x52C1_5CCA_1AD1_2B48L,
+ /* -288 */ 0x4DF6_6731_41B5_62BBL, 0x53B8_D9FE_50C2_BB0DL,
+ /* -287 */ 0x6174_00FD_9222_BB6AL, 0x48A7_107D_E4F3_69D0L,
+ /* -286 */ 0x79D1_013C_F6AB_6A45L, 0x1AD0_D49D_5E30_4444L,
+ /* -285 */ 0x4C22_A0C6_1A2B_226BL, 0x20C2_84E2_5ADE_2AABL,
+ /* -284 */ 0x5F2B_48F7_A0B5_EB06L, 0x08F3_261A_F195_B555L,
+ /* -283 */ 0x76F6_1B35_88E3_65C7L, 0x4B2F_EFA1_ADFB_22ABL,
+ /* -282 */ 0x4A59_D101_758E_1F9CL, 0x5EFD_F5C5_0CBC_F5ABL,
+ /* -281 */ 0x5CF0_4541_D2F1_A783L, 0x76BD_7336_4FEC_3315L,
+ /* -280 */ 0x742C_5692_47AE_1164L, 0x746C_D003_E3E7_3FDBL,
+ /* -279 */ 0x489B_B61B_6CCC_CADFL, 0x08C4_0202_6E70_87E9L,
+ /* -278 */ 0x5AC2_A3A2_47FF_FD96L, 0x6AF5_0283_0A0C_A9E3L,
+ /* -277 */ 0x7173_4C8A_D9FF_FCFCL, 0x45B2_4323_CC8F_D45CL,
+ /* -276 */ 0x46E8_0FD6_C83F_FE1DL, 0x6B8F_69F6_5FD9_E4B9L,
+ /* -275 */ 0x58A2_13CC_7A4F_FDA5L, 0x2673_4473_F7D0_5DE8L,
+ /* -274 */ 0x6ECA_98BF_98E3_FD0EL, 0x5010_1590_F5C4_7561L,
+ /* -273 */ 0x453E_9F77_BF8E_7E29L, 0x120A_0D7A_999A_C95DL,
+ /* -272 */ 0x568E_4755_AF72_1DB3L, 0x368C_90D9_4001_7BB4L,
+ /* -271 */ 0x6C31_D92B_1B4E_A520L, 0x242F_B50F_9001_DAA1L,
+ /* -270 */ 0x439F_27BA_F111_2734L, 0x169D_D129_BA01_28A5L,
+ /* -269 */ 0x5486_F1A9_AD55_7101L, 0x1C45_4574_2881_72CEL,
+ /* -268 */ 0x69A8_AE14_18AA_CD41L, 0x4356_96D1_32A1_CF81L,
+ /* -267 */ 0x4209_6CCC_8F6A_C048L, 0x7A16_1E42_BFA5_21B1L,
+ /* -266 */ 0x528B_C7FF_B345_705BL, 0x189B_A5D3_6F8E_6A1DL,
+ /* -265 */ 0x672E_B9FF_A016_CC71L, 0x7EC2_8F48_4B72_04A4L,
+ /* -264 */ 0x407D_343F_C40E_3FC7L, 0x1F39_998D_2F27_42E7L,
+ /* -263 */ 0x509C_814F_B511_CFB9L, 0x0707_FFF0_7AF1_13A1L,
+ /* -262 */ 0x64C3_A1A3_A256_43A7L, 0x28C9_FFEC_99AD_5889L,
+ /* -261 */ 0x7DF4_8A0C_8AEB_D491L, 0x12FC_7FE7_C018_AEABL,
+ /* -260 */ 0x4EB8_D647_D6D3_64DAL, 0x5BDD_CFF0_D80F_6D2BL,
+ /* -259 */ 0x6267_0BD9_CC88_3E11L, 0x32D5_43ED_0E13_4875L,
+ /* -258 */ 0x7B00_CED0_3FAA_4D95L, 0x5F8A_94E8_5198_1A93L,
+ /* -257 */ 0x4CE0_8142_27CA_707DL, 0x4BB6_9D11_32FF_109CL,
+ /* -256 */ 0x6018_A192_B1BD_0C9CL, 0x7EA4_4455_7FBE_D4C3L,
+ /* -255 */ 0x781E_C9F7_5E2C_4FC4L, 0x1E4D_556A_DFAE_89F3L,
+ /* -254 */ 0x4B13_3E3A_9ADB_B1DAL, 0x52F0_5562_CBCD_1638L,
+ /* -253 */ 0x5DD8_0DC9_4192_9E51L, 0x27AC_6ABB_7EC0_5BC6L,
+ /* -252 */ 0x754E_113B_91F7_45E5L, 0x5197_856A_5E70_72B8L,
+ /* -251 */ 0x4950_CAC5_3B3A_8BAFL, 0x42FE_B362_7B06_47B3L,
+ /* -250 */ 0x5BA4_FD76_8A09_2E9BL, 0x33BE_603B_19C7_D99FL,
+ /* -249 */ 0x728E_3CD4_2C8B_7A42L, 0x20AD_F849_E039_D007L,
+ /* -248 */ 0x4798_E604_9BD7_2C69L, 0x346C_BB2E_2C24_2205L,
+ /* -247 */ 0x597F_1F85_C2CC_F783L, 0x6187_E9F9_B72D_2A86L,
+ /* -246 */ 0x6FDE_E767_3380_3564L, 0x59E9_E478_24F8_7527L,
+ /* -245 */ 0x45EB_50A0_8030_215EL, 0x7832_2ECB_171B_4939L,
+ /* -244 */ 0x5766_24C8_A03C_29B6L, 0x563E_BA7D_DCE2_1B87L,
+ /* -243 */ 0x6D3F_ADFA_C84B_3424L, 0x2BCE_691D_541A_A268L,
+ /* -242 */ 0x4447_CCBC_BD2F_0096L, 0x5B61_01B2_5490_A581L,
+ /* -241 */ 0x5559_BFEB_EC7A_C0BCL, 0x3239_421E_E9B4_CEE1L,
+ /* -240 */ 0x6AB0_2FE6_E799_70EBL, 0x3EC7_92A6_A422_029AL,
+ /* -239 */ 0x42AE_1DF0_50BF_E693L, 0x173C_BBA8_2695_41A0L,
+ /* -238 */ 0x5359_A56C_64EF_E037L, 0x7D0B_EA92_303A_9208L,
+ /* -237 */ 0x6830_0EC7_7E2B_D845L, 0x7C4E_E536_BC49_368AL,
+ /* -236 */ 0x411E_093C_AEDB_672BL, 0x5DB1_4F42_35AD_C217L,
+ /* -235 */ 0x5165_8B8B_DA92_40F6L, 0x551D_A312_C319_329CL,
+ /* -234 */ 0x65BE_EE6E_D136_D134L, 0x2A65_0BD7_73DF_7F43L,
+ /* -233 */ 0x7F2E_AA0A_8584_8581L, 0x34FE_4ECD_50D7_5F14L,
+ /* -232 */ 0x4F7D_2A46_9372_D370L, 0x711E_F140_5286_9B6CL,
+ /* -231 */ 0x635C_74D8_384F_884DL, 0x0D66_AD90_6728_4247L,
+ /* -230 */ 0x7C33_920E_4663_6A60L, 0x30C0_58F4_80F2_52D9L,
+ /* -229 */ 0x4DA0_3B48_EBFE_227CL, 0x1E78_3798_D097_73C8L,
+ /* -228 */ 0x6108_4A1B_26FD_AB1BL, 0x2616_457F_04BD_50BAL,
+ /* -227 */ 0x794A_5CA1_F0BD_15E2L, 0x0F9B_D6DE_C5EC_A4E8L,
+ /* -226 */ 0x4BCE_79E5_3676_2DADL, 0x29C1_664B_3BB3_E711L,
+ /* -225 */ 0x5EC2_185E_8413_B918L, 0x5431_BFDE_0AA0_E0D5L,
+ /* -224 */ 0x7672_9E76_2518_A75EL, 0x693E_2FD5_8D49_190BL,
+ /* -223 */ 0x4A07_A309_D72F_689BL, 0x21C6_DDE5_784D_AFA7L,
+ /* -222 */ 0x5C89_8BCC_4CFB_42C2L, 0x0A38_955E_D661_1B90L,
+ /* -221 */ 0x73AB_EEBF_603A_1372L, 0x4CC6_BAB6_8BF9_6274L,
+ /* -220 */ 0x484B_7537_9C24_4C27L, 0x4FFC_34B2_177B_DD89L,
+ /* -219 */ 0x5A5E_5285_832D_5F31L, 0x43FB_41DE_9D5A_D4EBL,
+ /* -218 */ 0x70F5_E726_E3F8_B6FDL, 0x74FA_1256_44B1_8A26L,
+ /* -217 */ 0x4699_B078_4E7B_725EL, 0x591C_4B75_EAEE_F658L,
+ /* -216 */ 0x5840_1C96_621A_4EF6L, 0x2F63_5E53_65AA_B3EDL,
+ /* -215 */ 0x6E50_23BB_FAA0_E2B3L, 0x7B3C_35E8_3F15_60E9L,
+ /* -214 */ 0x44F2_1655_7CA4_8DB0L, 0x3D05_A1B1_276D_5C92L,
+ /* -213 */ 0x562E_9BEA_DBCD_B11CL, 0x4C47_0A1D_7148_B3B6L,
+ /* -212 */ 0x6BBA_42E5_92C1_1D63L, 0x5F58_CCA4_CD9A_E0A3L,
+ /* -211 */ 0x4354_69CF_7BB8_B25EL, 0x2B97_7FE7_0080_CC66L,
+ /* -210 */ 0x5429_8443_5AA6_DEF5L, 0x767D_5FE0_C0A0_FF80L,
+ /* -209 */ 0x6933_E554_3150_96B3L, 0x341C_B7D8_F0C9_3F5FL,
+ /* -208 */ 0x41C0_6F54_9ED2_5E30L, 0x1091_F2E7_967D_C79CL,
+ /* -207 */ 0x5230_8B29_C686_F5BCL, 0x14B6_6FA1_7C1D_3983L,
+ /* -206 */ 0x66BC_ADF4_3828_B32BL, 0x19E4_0B89_DB24_87E3L,
+ /* -205 */ 0x4035_ECB8_A319_6FFBL, 0x002E_8736_28F6_D4EEL,
+ /* -204 */ 0x5043_67E6_CBDF_CBF9L, 0x603A_2903_B334_8A2AL,
+ /* -203 */ 0x6454_41E0_7ED7_BEF8L, 0x1848_B344_A001_ACB4L,
+ /* -202 */ 0x7D69_5258_9E8D_AEB6L, 0x1E5A_E015_C802_17E1L,
+ /* -201 */ 0x4E61_D377_6318_8D31L, 0x72F8_CC0D_9D01_4EEDL,
+ /* -200 */ 0x61FA_4855_3BDE_B07EL, 0x2FB6_FF11_0441_A2A8L,
+ /* -199 */ 0x7A78_DA6A_8AD6_5C9DL, 0x7BA4_BED5_4552_0B52L,
+ /* -198 */ 0x4C8B_8882_96C5_F9E2L, 0x5D46_F745_4B53_4713L,
+ /* -197 */ 0x5FAE_6AA3_3C77_785BL, 0x3498_B516_9E28_18D8L,
+ /* -196 */ 0x779A_054C_0B95_5672L, 0x21BE_E25C_45B2_1F0EL,
+ /* -195 */ 0x4AC0_434F_873D_5607L, 0x3517_4D79_AB8F_5369L,
+ /* -194 */ 0x5D70_5423_690C_AB89L, 0x225D_20D8_1673_2843L,
+ /* -193 */ 0x74CC_692C_434F_D66BL, 0x4AF4_690E_1C0F_F253L,
+ /* -192 */ 0x48FF_C1BB_AA11_E603L, 0x1ED8_C1A8_D189_F774L,
+ /* -191 */ 0x5B3F_B22A_9496_5F84L, 0x068E_F213_05EC_7551L,
+ /* -190 */ 0x720F_9EB5_39BB_F765L, 0x0832_AE97_C767_92A5L,
+ /* -189 */ 0x4749_C331_4415_7A9FL, 0x151F_AD1E_DCA0_BBA8L,
+ /* -188 */ 0x591C_33FD_951A_D946L, 0x7A67_9866_93C8_EA91L,
+ /* -187 */ 0x6F63_40FC_FA61_8F98L, 0x5901_7E80_38BB_2536L,
+ /* -186 */ 0x459E_089E_1C7C_F9BFL, 0x37A0_EF10_2374_F742L,
+ /* -185 */ 0x5705_8AC5_A39C_382FL, 0x2589_2AD4_2C52_3512L,
+ /* -184 */ 0x6CC6_ED77_0C83_463BL, 0x0EEB_7589_3766_C256L,
+ /* -183 */ 0x43FC_546A_67D2_0BE4L, 0x7953_2975_C2A0_3976L,
+ /* -182 */ 0x54FB_6985_01C6_8EDEL, 0x17A7_F3D3_3348_47D4L,
+ /* -181 */ 0x6A3A_43E6_4238_3295L, 0x5D91_F0C8_001A_59C8L,
+ /* -180 */ 0x4264_6A6F_E963_1F9DL, 0x4A7B_367D_0010_781DL,
+ /* -179 */ 0x52FD_850B_E3BB_E784L, 0x7D1A_041C_4014_9625L,
+ /* -178 */ 0x67BC_E64E_DCAA_E166L, 0x1C60_8523_5019_BBAEL,
+ /* -177 */ 0x40D6_0FF1_49EA_CCDFL, 0x71BC_5336_1210_154DL,
+ /* -176 */ 0x510B_93ED_9C65_8017L, 0x6E2B_6803_9694_1AA0L,
+ /* -175 */ 0x654E_78E9_037E_E01DL, 0x69B6_4204_7C39_2148L,
+ /* -174 */ 0x7EA2_1723_445E_9825L, 0x2423_D285_9B47_6999L,
+ /* -173 */ 0x4F25_4E76_0ABB_1F17L, 0x2696_6393_810C_A200L,
+ /* -172 */ 0x62EE_A213_8D69_E6DDL, 0x103B_FC78_614F_CA80L,
+ /* -171 */ 0x7BAA_4A98_70C4_6094L, 0x344A_FB96_79A3_BD20L,
+ /* -170 */ 0x4D4A_6E9F_467A_BC5CL, 0x60AE_DD3E_0C06_5634L,
+ /* -169 */ 0x609D_0A47_1819_6B73L, 0x78DA_948D_8F07_EBC1L,
+ /* -168 */ 0x78C4_4CD8_DE1F_C650L, 0x7711_39B0_F2C9_E6B1L,
+ /* -167 */ 0x4B7A_B007_8AD3_DBF2L, 0x4A6A_C40E_97BE_302FL,
+ /* -166 */ 0x5E59_5C09_6D88_D2EFL, 0x1D05_7512_3DAD_BC3AL,
+ /* -165 */ 0x75EF_B30B_C8EB_07ABL, 0x0446_D256_CD19_2B49L,
+ /* -164 */ 0x49B5_CFE7_5D92_E4CAL, 0x72AC_4376_402F_BB0EL,
+ /* -163 */ 0x5C23_43E1_34F7_9DFDL, 0x4F57_5453_D03B_A9D1L,
+ /* -162 */ 0x732C_14D9_8235_857DL, 0x032D_2968_C44A_9445L,
+ /* -161 */ 0x47FB_8D07_F161_736EL, 0x11FC_39E1_7AAE_9CABL,
+ /* -160 */ 0x59FA_7049_EDB9_D049L, 0x567B_4859_D95A_43D6L,
+ /* -159 */ 0x7079_0C5C_6928_445CL, 0x0C1A_1A70_4FB0_D4CCL,
+ /* -158 */ 0x464B_A7B9_C1B9_2AB9L, 0x4790_5086_31CE_84FFL,
+ /* -157 */ 0x57DE_91A8_3227_7567L, 0x7974_64A7_BE42_263FL,
+ /* -156 */ 0x6DD6_3612_3EB1_52C1L, 0x77D1_7DD1_ADD2_AFCFL,
+ /* -155 */ 0x44A5_E1CB_672E_D3B9L, 0x1AE2_EEA3_0CA3_ADE1L,
+ /* -154 */ 0x55CF_5A3E_40FA_88A7L, 0x419B_AA4B_CFCC_995AL,
+ /* -153 */ 0x6B43_30CD_D139_2AD1L, 0x3202_94DE_C3BF_BFB0L,
+ /* -152 */ 0x4309_FE80_A2C3_BAC2L, 0x6F41_9D0B_3A57_D7CEL,
+ /* -151 */ 0x53CC_7E20_CB74_A973L, 0x4B12_044E_08ED_CDC2L,
+ /* -150 */ 0x68BF_9DA8_FE51_D3D0L, 0x3DD6_8561_8B29_4132L,
+ /* -149 */ 0x4177_C289_9EF3_2462L, 0x26A6_135C_F6F9_C8BFL,
+ /* -148 */ 0x51D5_B32C_06AF_ED7AL, 0x704F_9834_34B8_3AEFL,
+ /* -147 */ 0x664B_1FF7_085B_E8D9L, 0x4C63_7E41_41E6_49ABL,
+ /* -146 */ 0x7FDD_E7F4_CA72_E30FL, 0x7F7C_5DD1_925F_DC15L,
+ /* -145 */ 0x4FEA_B0F8_FE87_CDE9L, 0x7FAD_BAA2_FB7B_E98DL,
+ /* -144 */ 0x63E5_5D37_3E29_C164L, 0x3F99_294B_BA5A_E3F1L,
+ /* -143 */ 0x7CDE_B485_0DB4_31BDL, 0x4F7F_739E_A8F1_9CEDL,
+ /* -142 */ 0x4E0B_30D3_2890_9F16L, 0x41AF_A843_2997_0214L,
+ /* -141 */ 0x618D_FD07_F2B4_C6DCL, 0x121B_9253_F3FC_C299L,
+ /* -140 */ 0x79F1_7C49_EF61_F893L, 0x16A2_76E8_F0FB_F33FL,
+ /* -139 */ 0x4C36_EDAE_359D_3B5BL, 0x7E25_8A51_969D_7808L,
+ /* -138 */ 0x5F44_A919_C304_8A32L, 0x7DAE_ECE5_FC44_D609L,
+ /* -137 */ 0x7715_D360_33C5_ACBFL, 0x5D1A_A81F_7B56_0B8CL,
+ /* -136 */ 0x4A6D_A41C_205B_8BF7L, 0x6A30_A913_AD15_C738L,
+ /* -135 */ 0x5D09_0D23_2872_6EF5L, 0x64BC_D358_985B_3905L,
+ /* -134 */ 0x744B_506B_F28F_0AB3L, 0x1DEC_082E_BE72_0746L,
+ /* -133 */ 0x48AF_1243_7799_66B0L, 0x02B3_851D_3707_448CL,
+ /* -132 */ 0x5ADA_D6D4_557F_C05CL, 0x0360_6664_84C9_15AFL,
+ /* -131 */ 0x7191_8C89_6ADF_B073L, 0x0438_7FFD_A5FB_5B1BL,
+ /* -130 */ 0x46FA_F7D5_E2CB_CE47L, 0x72A3_4FFE_87BD_18F1L,
+ /* -129 */ 0x58B9_B5CB_5B7E_C1D9L, 0x6F4C_23FE_29AC_5F2DL,
+ /* -128 */ 0x6EE8_233E_325E_7250L, 0x2B1F_2CFD_B417_76F8L,
+ /* -127 */ 0x4551_1606_DF7B_0772L, 0x1AF3_7C1E_908E_AA5BL,
+ /* -126 */ 0x56A5_5B88_9759_C94EL, 0x61B0_5B26_34B2_54F2L,
+ /* -125 */ 0x6C4E_B26A_BD30_3BA2L, 0x3A1C_71EF_C1DE_EA2EL,
+ /* -124 */ 0x43B1_2F82_B63E_2545L, 0x4451_C735_D92B_525DL,
+ /* -123 */ 0x549D_7B63_63CD_AE96L, 0x7566_3903_4F76_26F4L,
+ /* -122 */ 0x69C4_DA3C_3CC1_1A3CL, 0x52BF_C744_2353_B0B1L,
+ /* -121 */ 0x421B_0865_A5F8_B065L, 0x73B7_DC8A_9614_4E6FL,
+ /* -120 */ 0x52A1_CA7F_0F76_DC7FL, 0x30A5_D3AD_3B99_620BL,
+ /* -119 */ 0x674A_3D1E_D354_939FL, 0x1CCF_4898_8A7F_BA8DL,
+ /* -118 */ 0x408E_6633_4414_DC43L, 0x4201_8D5F_568F_D498L,
+ /* -117 */ 0x50B1_FFC0_151A_1354L, 0x3281_F0B7_2C33_C9BEL,
+ /* -116 */ 0x64DE_7FB0_1A60_9829L, 0x3F22_6CE4_F740_BC2EL,
+ /* -115 */ 0x7E16_1F9C_20F8_BE33L, 0x6EEB_081E_3510_EB39L,
+ /* -114 */ 0x4ECD_D3C1_949B_76E0L, 0x3552_E512_E12A_9304L,
+ /* -113 */ 0x6281_48B1_F9C2_5498L, 0x42A7_9E57_9975_37C5L,
+ /* -112 */ 0x7B21_9ADE_7832_E9BEL, 0x5351_85ED_7FD2_85B6L,
+ /* -111 */ 0x4CF5_00CB_0B1F_D217L, 0x1412_F3B4_6FE3_9392L,
+ /* -110 */ 0x6032_40FD_CDE7_C69CL, 0x7917_B0A1_8BDC_7876L,
+ /* -109 */ 0x783E_D13D_4161_B844L, 0x175D_9CC9_EED3_9694L,
+ /* -108 */ 0x4B27_42C6_48DD_132AL, 0x4E9A_81FE_3544_3E1CL,
+ /* -107 */ 0x5DF1_1377_DB14_57F5L, 0x2241_227D_C295_4DA3L,
+ /* -106 */ 0x756D_5855_D1D9_6DF2L, 0x4AD1_6B1D_333A_A10CL,
+ /* -105 */ 0x4964_5735_A327_E4B7L, 0x4EC2_E2F2_4004_A4A8L,
+ /* -104 */ 0x5BBD_6D03_0BF1_DDE5L, 0x4273_9BAE_D005_CDD2L,
+ /* -103 */ 0x72AC_C843_CEEE_555EL, 0x7310_829A_8407_4146L,
+ /* -102 */ 0x47AB_FD2A_6154_F55BL, 0x27EA_51A0_9284_88CCL,
+ /* -101 */ 0x5996_FC74_F9AA_32B2L, 0x11E4_E608_B725_AAFFL,
+ /* -100 */ 0x6FFC_BB92_3814_BF5EL, 0x565E_1F8A_E4EF_15BEL,
+ /* -99 */ 0x45FD_F53B_630C_F79BL, 0x15FA_D3B6_CF15_6D97L,
+ /* -98 */ 0x577D_728A_3BD0_3581L, 0x7B79_88A4_82DA_C8FDL,
+ /* -97 */ 0x6D5C_CF2C_CAC4_42E2L, 0x3A57_EACD_A391_7B3CL,
+ /* -96 */ 0x445A_017B_FEBA_A9CDL, 0x4476_F2C0_863A_ED06L,
+ /* -95 */ 0x5570_81DA_FE69_5440L, 0x7594_AF70_A7C9_A847L,
+ /* -94 */ 0x6ACC_A251_BE03_A951L, 0x12F9_DB4C_D1BC_1258L,
+ /* -93 */ 0x42BF_E573_16C2_49D2L, 0x5BDC_2910_0315_8B77L,
+ /* -92 */ 0x536F_DECF_DC72_DC47L, 0x32D3_3354_03DA_EE55L,
+ /* -91 */ 0x684B_D683_D38F_9359L, 0x1F88_0029_04D1_A9EAL,
+ /* -90 */ 0x412F_6612_6439_BC17L, 0x63B5_0019_A303_0A33L,
+ /* -89 */ 0x517B_3F96_FD48_2B1DL, 0x5CA2_4020_0BC3_CCBFL,
+ /* -88 */ 0x65DA_0F7C_BC9A_35E5L, 0x13CA_D028_0EB4_BFEFL,
+ /* -87 */ 0x7F50_935B_EBC0_C35EL, 0x38BD_8432_1261_EFEBL,
+ /* -86 */ 0x4F92_5C19_7358_7A1BL, 0x0376_729F_4B7D_35F3L,
+ /* -85 */ 0x6376_F31F_D02E_98A1L, 0x6454_0F47_1E5C_836FL,
+ /* -84 */ 0x7C54_AFE7_C43A_3ECAL, 0x1D69_1318_E5F3_A44BL,
+ /* -83 */ 0x4DB4_EDF0_DAA4_673EL, 0x3261_ABEF_8FB8_46AFL,
+ /* -82 */ 0x6122_296D_114D_810DL, 0x7EFA_16EB_73A6_585BL,
+ /* -81 */ 0x796A_B3C8_55A0_E151L, 0x3EB8_9CA6_508F_EE71L,
+ /* -80 */ 0x4BE2_B05D_3584_8CD2L, 0x7733_61E7_F259_F507L,
+ /* -79 */ 0x5EDB_5C74_82E5_B007L, 0x5500_3A61_EEF0_7249L,
+ /* -78 */ 0x7692_3391_A39F_1C09L, 0x4A40_48FA_6AAC_8EDBL,
+ /* -77 */ 0x4A1B_603B_0643_7185L, 0x7E68_2D9C_82AB_D949L,
+ /* -76 */ 0x5CA2_3849_C7D4_4DE7L, 0x3E02_3903_A356_CF9BL,
+ /* -75 */ 0x73CA_C65C_39C9_6161L, 0x2D82_C744_8C2C_8382L,
+ /* -74 */ 0x485E_BBF9_A41D_DCDCL, 0x6C71_BC8A_D79B_D231L,
+ /* -73 */ 0x5A76_6AF8_0D25_5414L, 0x078E_2BAD_8D82_C6BDL,
+ /* -72 */ 0x7114_05B6_106E_A919L, 0x0971_B698_F0E3_786DL,
+ /* -71 */ 0x46AC_8391_CA45_29AFL, 0x55E7_121F_968E_2B44L,
+ /* -70 */ 0x5857_A476_3CD6_741BL, 0x4B60_D6A7_7C31_B615L,
+ /* -69 */ 0x6E6D_8D93_CC0C_1122L, 0x3E39_0C51_5B3E_239AL,
+ /* -68 */ 0x4504_787C_5F87_8AB5L, 0x46E3_A7B2_D906_D640L,
+ /* -67 */ 0x5645_969B_7769_6D62L, 0x789C_919F_8F48_8BD0L,
+ /* -66 */ 0x6BD6_FC42_5543_C8BBL, 0x56C3_B607_731A_AEC4L,
+ /* -65 */ 0x4366_5DA9_754A_5D75L, 0x263A_51C4_A7F0_AD3BL,
+ /* -64 */ 0x543F_F513_D29C_F4D2L, 0x4FC8_E635_D1EC_D88AL,
+ /* -63 */ 0x694F_F258_C744_3207L, 0x23BB_1FC3_4668_0EACL,
+ /* -62 */ 0x41D1_F777_7C8A_9F44L, 0x4654_F3DA_0C01_092CL,
+ /* -61 */ 0x5246_7555_5BAD_4715L, 0x57EA_30D0_8F01_4B76L,
+ /* -60 */ 0x66D8_12AA_B298_98DBL, 0x0DE4_BD04_B2C1_9E54L,
+ /* -59 */ 0x4047_0BAA_AF9F_5F88L, 0x78AE_F622_EFB9_02F5L,
+ /* -58 */ 0x5058_CE95_5B87_376BL, 0x16DA_B3AB_ABA7_43B2L,
+ /* -57 */ 0x646F_023A_B269_0545L, 0x7C91_6096_9691_149EL,
+ /* -56 */ 0x7D8A_C2C9_5F03_4697L, 0x3BB5_B8BC_3C35_59C5L,
+ /* -55 */ 0x4E76_B9BD_DB62_0C1EL, 0x5551_9375_A5A1_581BL,
+ /* -54 */ 0x6214_682D_523A_8F26L, 0x2AA5_F853_0F09_AE22L,
+ /* -53 */ 0x7A99_8238_A6C9_32EFL, 0x754F_7667_D2CC_19ABL,
+ /* -52 */ 0x4C9F_F163_683D_BFD5L, 0x7951_AA00_E3BF_900BL,
+ /* -51 */ 0x5FC7_EDBC_424D_2FCBL, 0x37A6_1481_1CAF_740DL,
+ /* -50 */ 0x77B9_E92B_52E0_7BBEL, 0x258F_99A1_63DB_5111L,
+ /* -49 */ 0x4AD4_31BB_13CC_4D56L, 0x7779_C004_DE69_12ABL,
+ /* -48 */ 0x5D89_3E29_D8BF_60ACL, 0x5558_3006_1603_5755L,
+ /* -47 */ 0x74EB_8DB4_4EEF_38D7L, 0x6AAE_3C07_9B84_2D2AL,
+ /* -46 */ 0x4913_3890_B155_8386L, 0x72AC_E584_C132_9C3BL,
+ /* -45 */ 0x5B58_06B4_DDAA_E468L, 0x4F58_1EE5_F17F_4349L,
+ /* -44 */ 0x722E_0862_1515_9D82L, 0x632E_269F_6DDF_141BL,
+ /* -43 */ 0x475C_C53D_4D2D_8271L, 0x5DFC_D823_A4AB_6C91L,
+ /* -42 */ 0x5933_F68C_A078_E30EL, 0x157C_0E2C_8DD6_47B5L,
+ /* -41 */ 0x6F80_F42F_C897_1BD1L, 0x5ADB_11B7_B14B_D9A3L,
+ /* -40 */ 0x45B0_989D_DD5E_7163L, 0x08C8_EB12_CECF_6806L,
+ /* -39 */ 0x571C_BEC5_54B6_0DBBL, 0x6AFB_25D7_8283_4207L,
+ /* -38 */ 0x6CE3_EE76_A9E3_912AL, 0x65B9_EF4D_6324_1289L,
+ /* -37 */ 0x440E_750A_2A2E_3ABAL, 0x5F94_3590_5DF6_8B96L,
+ /* -36 */ 0x5512_124C_B4B9_C969L, 0x3779_42F4_7574_2E7BL,
+ /* -35 */ 0x6A56_96DF_E1E8_3BC3L, 0x6557_93B1_92D1_3A1AL,
+ /* -34 */ 0x4276_1E4B_ED31_255AL, 0x2F56_BC4E_FBC2_C450L,
+ /* -33 */ 0x5313_A5DE_E87D_6EB0L, 0x7B2C_6B62_BAB3_7564L,
+ /* -32 */ 0x67D8_8F56_A29C_CA5DL, 0x19F7_863B_6960_52BDL,
+ /* -31 */ 0x40E7_5996_25A1_FE7AL, 0x203A_B3E5_21DC_33B6L,
+ /* -30 */ 0x5121_2FFB_AF0A_7E18L, 0x6849_60DE_6A53_40A4L,
+ /* -29 */ 0x6569_7BFA_9ACD_1D9FL, 0x025B_B916_04E8_10CDL,
+ /* -28 */ 0x7EC3_DAF9_4180_6506L, 0x62F2_A75B_8622_1500L,
+ /* -27 */ 0x4F3A_68DB_C8F0_3F24L, 0x1DD7_A899_33D5_4D20L,
+ /* -26 */ 0x6309_0312_BB2C_4EEDL, 0x254D_92BF_80CA_A068L,
+ /* -25 */ 0x7BCB_43D7_69F7_62A8L, 0x4EA0_F76F_60FD_4882L,
+ /* -24 */ 0x4D5F_0A66_A23A_9DA9L, 0x3124_9AA5_9C9E_4D51L,
+ /* -23 */ 0x60B6_CD00_4AC9_4513L, 0x5D6D_C14F_03C5_E0A5L,
+ /* -22 */ 0x78E4_8040_5D7B_9658L, 0x54C9_31A2_C4B7_58CFL,
+ /* -21 */ 0x4B8E_D028_3A6D_3DF7L, 0x34FD_BF05_BAF2_9781L,
+ /* -20 */ 0x5E72_8432_4908_8D75L, 0x223D_2EC7_29AF_3D62L,
+ /* -19 */ 0x760F_253E_DB4A_B0D2L, 0x4ACC_7A78_F41B_0CBAL,
+ /* -18 */ 0x49C9_7747_490E_AE83L, 0x4EBF_CC8B_9890_E7F4L,
+ /* -17 */ 0x5C3B_D519_1B52_5A24L, 0x426F_BFAE_7EB5_21F1L,
+ /* -16 */ 0x734A_CA5F_6226_F0ADL, 0x530B_AF9A_1E62_6A6DL,
+ /* -15 */ 0x480E_BE7B_9D58_566CL, 0x43E7_4DC0_52FD_8285L,
+ /* -14 */ 0x5A12_6E1A_84AE_6C07L, 0x54E1_2130_67BC_E326L,
+ /* -13 */ 0x7097_09A1_25DA_0709L, 0x4A19_697C_81AC_1BEFL,
+ /* -12 */ 0x465E_6604_B7A8_4465L, 0x7E4F_E1ED_D10B_9175L,
+ /* -11 */ 0x57F5_FF85_E592_557FL, 0x3DE3_DA69_454E_75D3L,
+ /* -10 */ 0x6DF3_7F67_5EF6_EADFL, 0x2D5C_D103_96A2_1347L,
+ /* -9 */ 0x44B8_2FA0_9B5A_52CBL, 0x4C5A_02A2_3E25_4C0DL,
+ /* -8 */ 0x55E6_3B88_C230_E77EL, 0x3F70_834A_CDAE_9F10L,
+ /* -7 */ 0x6B5F_CA6A_F2BD_215EL, 0x0F4C_A41D_811A_46D4L,
+ /* -6 */ 0x431B_DE82_D7B6_34DAL, 0x698F_E692_70B0_6C44L,
+ /* -5 */ 0x53E2_D623_8DA3_C211L, 0x43F3_E037_0CDC_8755L,
+ /* -4 */ 0x68DB_8BAC_710C_B295L, 0x74F0_D844_D013_A92BL,
+ /* -3 */ 0x4189_374B_C6A7_EF9DL, 0x5916_872B_020C_49BBL,
+ /* -2 */ 0x51EB_851E_B851_EB85L, 0x0F5C_28F5_C28F_5C29L,
+ /* -1 */ 0x6666_6666_6666_6666L, 0x3333_3333_3333_3334L,
+ /* 0 */ 0x4000_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 1 */ 0x5000_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 2 */ 0x6400_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 3 */ 0x7D00_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 4 */ 0x4E20_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 5 */ 0x61A8_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 6 */ 0x7A12_0000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 7 */ 0x4C4B_4000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 8 */ 0x5F5E_1000_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 9 */ 0x7735_9400_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 10 */ 0x4A81_7C80_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 11 */ 0x5D21_DBA0_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 12 */ 0x746A_5288_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 13 */ 0x48C2_7395_0000_0000L, 0x0000_0000_0000_0000L,
+ /* 14 */ 0x5AF3_107A_4000_0000L, 0x0000_0000_0000_0000L,
+ /* 15 */ 0x71AF_D498_D000_0000L, 0x0000_0000_0000_0000L,
+ /* 16 */ 0x470D_E4DF_8200_0000L, 0x0000_0000_0000_0000L,
+ /* 17 */ 0x58D1_5E17_6280_0000L, 0x0000_0000_0000_0000L,
+ /* 18 */ 0x6F05_B59D_3B20_0000L, 0x0000_0000_0000_0000L,
+ /* 19 */ 0x4563_9182_44F4_0000L, 0x0000_0000_0000_0000L,
+ /* 20 */ 0x56BC_75E2_D631_0000L, 0x0000_0000_0000_0000L,
+ /* 21 */ 0x6C6B_935B_8BBD_4000L, 0x0000_0000_0000_0000L,
+ /* 22 */ 0x43C3_3C19_3756_4800L, 0x0000_0000_0000_0000L,
+ /* 23 */ 0x54B4_0B1F_852B_DA00L, 0x0000_0000_0000_0000L,
+ /* 24 */ 0x69E1_0DE7_6676_D080L, 0x0000_0000_0000_0000L,
+ /* 25 */ 0x422C_A8B0_A00A_4250L, 0x0000_0000_0000_0000L,
+ /* 26 */ 0x52B7_D2DC_C80C_D2E4L, 0x0000_0000_0000_0000L,
+ /* 27 */ 0x6765_C793_FA10_079DL, 0x0000_0000_0000_0000L,
+ /* 28 */ 0x409F_9CBC_7C4A_04C2L, 0x1000_0000_0000_0000L,
+ /* 29 */ 0x50C7_83EB_9B5C_85F2L, 0x5400_0000_0000_0000L,
+ /* 30 */ 0x64F9_64E6_8233_A76FL, 0x2900_0000_0000_0000L,
+ /* 31 */ 0x7E37_BE20_22C0_914BL, 0x1340_0000_0000_0000L,
+ /* 32 */ 0x4EE2_D6D4_15B8_5ACEL, 0x7C08_0000_0000_0000L,
+ /* 33 */ 0x629B_8C89_1B26_7182L, 0x5B0A_0000_0000_0000L,
+ /* 34 */ 0x7B42_6FAB_61F0_0DE3L, 0x31CC_8000_0000_0000L,
+ /* 35 */ 0x4D09_85CB_1D36_08AEL, 0x0F1F_D000_0000_0000L,
+ /* 36 */ 0x604B_E73D_E483_8AD9L, 0x52E7_C400_0000_0000L,
+ /* 37 */ 0x785E_E10D_5DA4_6D90L, 0x07A1_B500_0000_0000L,
+ /* 38 */ 0x4B3B_4CA8_5A86_C47AL, 0x04C5_1120_0000_0000L,
+ /* 39 */ 0x5E0A_1FD2_7128_7598L, 0x45F6_5568_0000_0000L,
+ /* 40 */ 0x758C_A7C7_0D72_92FEL, 0x5773_EAC2_0000_0000L,
+ /* 41 */ 0x4977_E8DC_6867_9BDFL, 0x16A8_72B9_4000_0000L,
+ /* 42 */ 0x5BD5_E313_8281_82D6L, 0x7C52_8F67_9000_0000L,
+ /* 43 */ 0x72CB_5BD8_6321_E38CL, 0x5B67_3341_7400_0000L,
+ /* 44 */ 0x47BF_1967_3DF5_2E37L, 0x7920_8008_E880_0000L,
+ /* 45 */ 0x59AE_DFC1_0D72_79C5L, 0x7768_A00B_22A0_0000L,
+ /* 46 */ 0x701A_97B1_50CF_1837L, 0x3542_C80D_EB48_0000L,
+ /* 47 */ 0x4610_9ECE_D281_6F22L, 0x5149_BD08_B30D_0000L,
+ /* 48 */ 0x5794_C682_8721_CAEBL, 0x259C_2C4A_DFD0_4000L,
+ /* 49 */ 0x6D79_F823_28EA_3DA6L, 0x0F03_375D_97C4_5000L,
+ /* 50 */ 0x446C_3B15_F992_6687L, 0x6962_029A_7EDA_B200L,
+ /* 51 */ 0x5587_49DB_77F7_0029L, 0x63BA_8341_1E91_5E80L,
+ /* 52 */ 0x6AE9_1C52_55F4_C034L, 0x1CA9_2411_6635_B620L,
+ /* 53 */ 0x42D1_B1B3_75B8_F820L, 0x51E9_B68A_DFE1_91D4L,
+ /* 54 */ 0x5386_1E20_5327_3628L, 0x6664_242D_97D9_F649L,
+ /* 55 */ 0x6867_A5A8_67F1_03B2L, 0x7FFD_2D38_FDD0_73DCL,
+ /* 56 */ 0x4140_C789_40F6_A24FL, 0x6FFE_3C43_9EA2_486AL,
+ /* 57 */ 0x5190_F96B_9134_4AE3L, 0x6BFD_CB54_864A_DA84L,
+ /* 58 */ 0x65F5_37C6_7581_5D9CL, 0x66FD_3E29_A7DD_9125L,
+ /* 59 */ 0x7F72_85B8_12E1_B504L, 0x00BC_8DB4_11D4_F56EL,
+ /* 60 */ 0x4FA7_9393_0BCD_1122L, 0x4075_D890_8B25_1965L,
+ /* 61 */ 0x6391_7877_CEC0_556BL, 0x1093_4EB4_ADEE_5FBEL,
+ /* 62 */ 0x7C75_D695_C270_6AC5L, 0x74B8_2261_D969_F7ADL,
+ /* 63 */ 0x4DC9_A61D_9986_42BBL, 0x58F3_157D_27E2_3ACCL,
+ /* 64 */ 0x613C_0FA4_FFE7_D36AL, 0x4F2F_DADC_71DA_C97FL,
+ /* 65 */ 0x798B_138E_3FE1_C845L, 0x22FB_D193_8E51_7BDFL,
+ /* 66 */ 0x4BF6_EC38_E7ED_1D2BL, 0x25DD_62FC_38F2_ED6CL,
+ /* 67 */ 0x5EF4_A747_21E8_6476L, 0x0F54_BBBB_472F_A8C6L,
+ /* 68 */ 0x76B1_D118_EA62_7D93L, 0x5329_EAAA_18FB_92F8L,
+ /* 69 */ 0x4A2F_22AF_927D_8E7CL, 0x23FA_32AA_4F9D_3BDBL,
+ /* 70 */ 0x5CBA_EB5B_771C_F21BL, 0x2CF8_BF54_E384_8AD2L,
+ /* 71 */ 0x73E9_A632_54E4_2EA2L, 0x1836_EF2A_1C65_AD86L,
+ /* 72 */ 0x4872_07DF_750E_9D25L, 0x2F22_557A_51BF_8C74L,
+ /* 73 */ 0x5A8E_89D7_5252_446EL, 0x5AEA_EAD8_E62F_6F91L,
+ /* 74 */ 0x7132_2C4D_26E6_D58AL, 0x31A5_A58F_1FBB_4B75L,
+ /* 75 */ 0x46BF_5BB0_3850_4576L, 0x3F07_8779_73D5_0F29L,
+ /* 76 */ 0x586F_329C_4664_56D4L, 0x0EC9_6957_D0CA_52F3L,
+ /* 77 */ 0x6E8A_FF43_57FD_6C89L, 0x127B_C3AD_C4FC_E7B0L,
+ /* 78 */ 0x4516_DF8A_16FE_63D5L, 0x5B8D_5A4C_9B1E_10CEL,
+ /* 79 */ 0x565C_976C_9CBD_FCCBL, 0x1270_B0DF_C1E5_9502L,
+ /* 80 */ 0x6BF3_BD47_C3ED_7BFDL, 0x770C_DD17_B25E_FA42L,
+ /* 81 */ 0x4378_564C_DA74_6D7EL, 0x5A68_0A2E_CF7B_5C69L,
+ /* 82 */ 0x5456_6BE0_1111_88DEL, 0x3102_0CBA_835A_3384L,
+ /* 83 */ 0x696C_06D8_1555_EB15L, 0x7D42_8FE9_2430_C065L,
+ /* 84 */ 0x41E3_8447_0D55_B2EDL, 0x5E49_99F1_B69E_783FL,
+ /* 85 */ 0x525C_6558_D0AB_1FA9L, 0x15DC_006E_2446_164FL,
+ /* 86 */ 0x66F3_7EAF_04D5_E793L, 0x3B53_0089_AD57_9BE2L,
+ /* 87 */ 0x4058_2F2D_6305_B0BCL, 0x1513_E056_0C56_C16EL,
+ /* 88 */ 0x506E_3AF8_BBC7_1CEBL, 0x1A58_D86B_8F6C_71C9L,
+ /* 89 */ 0x6489_C9B6_EAB8_E426L, 0x00EF_0E86_7347_8E3BL,
+ /* 90 */ 0x7DAC_3C24_A567_1D2FL, 0x412A_D228_1019_71C9L,
+ /* 91 */ 0x4E8B_A596_E760_723DL, 0x58BA_C359_0A0F_E71EL,
+ /* 92 */ 0x622E_8EFC_A138_8ECDL, 0x0EE9_742F_4C93_E0E6L,
+ /* 93 */ 0x7ABA_32BB_C986_B280L, 0x32A3_D13B_1FB8_D91FL,
+ /* 94 */ 0x4CB4_5FB5_5DF4_2F90L, 0x1FA6_62C4_F3D3_87B3L,
+ /* 95 */ 0x5FE1_77A2_B571_3B74L, 0x278F_FB76_30C8_69A0L,
+ /* 96 */ 0x77D9_D58B_62CD_8A51L, 0x3173_FA53_BCFA_8408L,
+ /* 97 */ 0x4AE8_2577_1DC0_7672L, 0x6EE8_7C74_561C_9285L,
+ /* 98 */ 0x5DA2_2ED4_E530_940FL, 0x4AA2_9B91_6BA3_B726L,
+ /* 99 */ 0x750A_BA8A_1E7C_B913L, 0x3D4B_4275_C68C_A4F0L,
+ /* 100 */ 0x4926_B496_530D_F3ACL, 0x164F_0989_9C17_E716L,
+ /* 101 */ 0x5B70_61BB_E7D1_7097L, 0x1BE2_CBEC_031D_E0DCL,
+ /* 102 */ 0x724C_7A2A_E1C5_CCBDL, 0x02DB_7EE7_03E5_5912L,
+ /* 103 */ 0x476F_CC5A_CD1B_9FF6L, 0x11C9_2F50_626F_57ACL,
+ /* 104 */ 0x594B_BF71_8062_87F3L, 0x563B_7B24_7B0B_2D96L,
+ /* 105 */ 0x6F9E_AF4D_E07B_29F0L, 0x4BCA_59ED_99CD_F8FCL,
+ /* 106 */ 0x45C3_2D90_AC4C_FA36L, 0x2F5E_7834_8020_BB9EL,
+ /* 107 */ 0x5733_F8F4_D760_38C3L, 0x7B36_1641_A028_EA85L,
+ /* 108 */ 0x6D00_F732_0D38_46F4L, 0x7A03_9BD2_0833_2526L,
+ /* 109 */ 0x4420_9A7F_4843_2C59L, 0x0C42_4163_451F_F738L,
+ /* 110 */ 0x5528_C11F_1A53_F76FL, 0x2F52_D1BC_1667_F506L,
+ /* 111 */ 0x6A72_F166_E0E8_F54BL, 0x1B27_862B_1C01_F247L,
+ /* 112 */ 0x4287_D6E0_4C91_994FL, 0x00F8_B3DA_F181_376DL,
+ /* 113 */ 0x5329_CC98_5FB5_FFA2L, 0x6136_E0D1_ADE1_8548L,
+ /* 114 */ 0x67F4_3FBE_77A3_7F8BL, 0x3984_9906_1959_E699L,
+ /* 115 */ 0x40F8_A7D7_0AC6_2FB7L, 0x13F2_DFA3_CFD8_3020L,
+ /* 116 */ 0x5136_D1CC_CD77_BBA4L, 0x78EF_978C_C3CE_3C28L,
+ /* 117 */ 0x6584_8640_00D5_AA8EL, 0x172B_7D6F_F4C1_CB32L,
+ /* 118 */ 0x7EE5_A7D0_010B_1531L, 0x5CF6_5CCB_F1F2_3DFEL,
+ /* 119 */ 0x4F4F_88E2_00A6_ED3FL, 0x0A19_F9FF_7737_66BFL,
+ /* 120 */ 0x6323_6B1A_80D0_A88EL, 0x6CA0_787F_5505_406FL,
+ /* 121 */ 0x7BEC_45E1_2104_D2B2L, 0x47C8_969F_2A46_908AL,
+ /* 122 */ 0x4D73_ABAC_B4A3_03AFL, 0x4CDD_5E23_7A6C_1A57L,
+ /* 123 */ 0x60D0_9697_E1CB_C49BL, 0x4014_B5AC_5907_20ECL,
+ /* 124 */ 0x7904_BC3D_DA3E_B5C2L, 0x3019_E317_6F48_E927L,
+ /* 125 */ 0x4BA2_F5A6_A867_3199L, 0x3E10_2DEE_A58D_91B9L,
+ /* 126 */ 0x5E8B_B310_5280_FDFFL, 0x6D94_396A_4EF0_F627L,
+ /* 127 */ 0x762E_9FD4_6721_3D7FL, 0x68F9_47C4_E2AD_33B0L,
+ /* 128 */ 0x49DD_23E4_C074_C66FL, 0x719B_CCDB_0DAC_404EL,
+ /* 129 */ 0x5C54_6CDD_F091_F80BL, 0x6E02_C011_D117_5062L,
+ /* 130 */ 0x7369_8815_6CB6_760EL, 0x6983_7016_455D_247AL,
+ /* 131 */ 0x4821_F50D_63F2_09C9L, 0x21F2_260D_EB5A_36CCL,
+ /* 132 */ 0x5A2A_7250_BCEE_8C3BL, 0x4A6E_AF91_6630_C47FL,
+ /* 133 */ 0x70B5_0EE4_EC2A_2F4AL, 0x3D0A_5B75_BFBC_F59FL,
+ /* 134 */ 0x4671_294F_139A_5D8EL, 0x4626_7929_97D6_1984L,
+ /* 135 */ 0x580D_73A2_D880_F4F2L, 0x17B0_1773_FDCB_9FE4L,
+ /* 136 */ 0x6E10_D08B_8EA1_322EL, 0x5D9C_1D50_FD3E_87DDL,
+ /* 137 */ 0x44CA_8257_3924_BF5DL, 0x1A81_9252_9E47_14EBL,
+ /* 138 */ 0x55FD_22ED_076D_EF34L, 0x4121_F6E7_45D8_DA25L,
+ /* 139 */ 0x6B7C_6BA8_4949_6B01L, 0x516A_74A1_174F_10AEL,
+ /* 140 */ 0x432D_C349_2DCD_E2E1L, 0x02E2_88E4_AE91_6A6DL,
+ /* 141 */ 0x53F9_341B_7941_5B99L, 0x239B_2B1D_DA35_C508L,
+ /* 142 */ 0x68F7_8122_5791_B27FL, 0x4C81_F5E5_50C3_364AL,
+ /* 143 */ 0x419A_B0B5_76BB_0F8FL, 0x5FD1_39AF_527A_01EFL,
+ /* 144 */ 0x5201_5CE2_D469_D373L, 0x57C5_881B_2718_826AL,
+ /* 145 */ 0x6681_B41B_8984_4850L, 0x4DB6_EA21_F0DE_A304L,
+ /* 146 */ 0x4011_1091_35F2_AD32L, 0x3092_5255_368B_25E3L,
+ /* 147 */ 0x5015_54B5_836F_587EL, 0x7CB6_E6EA_842D_EF5CL,
+ /* 148 */ 0x641A_A9E2_E44B_2E9EL, 0x5BE4_A0A5_2539_6B32L,
+ /* 149 */ 0x7D21_545B_9D5D_FA46L, 0x32DD_C8CE_6E87_C5FFL,
+ /* 150 */ 0x4E34_D4B9_425A_BC6BL, 0x7FCA_9D81_0514_DBBFL,
+ /* 151 */ 0x61C2_09E7_92F1_6B86L, 0x7FBD_44E1_465A_12AFL,
+ /* 152 */ 0x7A32_8C61_77AD_C668L, 0x5FAC_9619_97F0_975BL,
+ /* 153 */ 0x4C5F_97BC_EACC_9C01L, 0x3BCB_DDCF_FEF6_5E99L,
+ /* 154 */ 0x5F77_7DAC_257F_C301L, 0x6ABE_D543_FEB3_F63FL,
+ /* 155 */ 0x7755_5D17_2EDF_B3C2L, 0x256E_8A94_FE60_F3CFL,
+ /* 156 */ 0x4A95_5A2E_7D4B_D059L, 0x3765_169D_1EFC_9861L,
+ /* 157 */ 0x5D3A_B0BA_1C9E_C46FL, 0x653E_5C44_66BB_BE7AL,
+ /* 158 */ 0x7489_5CE8_A3C6_758BL, 0x5E8D_F355_806A_AE18L,
+ /* 159 */ 0x48D5_DA11_665C_0977L, 0x2B18_B815_7042_ACCFL,
+ /* 160 */ 0x5B0B_5095_BFF3_0BD5L, 0x15DE_E61A_CC53_5803L,
+ /* 161 */ 0x71CE_24BB_2FEF_CECAL, 0x3B56_9FA1_7F68_2E03L,
+ /* 162 */ 0x4720_D6F4_FDF5_E13EL, 0x4516_23C4_EFA1_1CC2L,
+ /* 163 */ 0x58E9_0CB2_3D73_598EL, 0x165B_ACB6_2B89_63F3L,
+ /* 164 */ 0x6F23_4FDE_CCD0_2FF1L, 0x5BF2_97E3_B66B_BCEFL,
+ /* 165 */ 0x4576_11EB_4002_1DF7L, 0x0977_9EEE_5203_5616L,
+ /* 166 */ 0x56D3_9666_1002_A574L, 0x6BD5_86A9_E684_2B9BL,
+ /* 167 */ 0x6C88_7BFF_9403_4ED2L, 0x06CA_E854_6025_3682L,
+ /* 168 */ 0x43D5_4D7F_BC82_1143L, 0x243E_D134_BC17_4211L,
+ /* 169 */ 0x54CA_A0DF_ABA2_9594L, 0x0D4E_8581_EB1D_1295L,
+ /* 170 */ 0x69FD_4917_968B_3AF9L, 0x10A2_26E2_65E4_573BL,
+ /* 171 */ 0x423E_4DAE_BE17_04DBL, 0x5A65_584D_7FAE_B685L,
+ /* 172 */ 0x52CD_E11A_6D9C_C612L, 0x50FE_AE60_DF9A_6426L,
+ /* 173 */ 0x6781_5961_0903_F797L, 0x253E_59F9_1780_FD2FL,
+ /* 174 */ 0x40B0_D7DC_A5A2_7ABEL, 0x4746_F83B_AEB0_9E3EL,
+ /* 175 */ 0x50DD_0DD3_CF0B_196EL, 0x1918_B64A_9A5C_C5CDL,
+ /* 176 */ 0x6514_5148_C2CD_DFC9L, 0x5F5E_E3DD_40F3_F740L,
+ /* 177 */ 0x7E59_659A_F381_57BCL, 0x1736_9CD4_9130_F510L,
+ /* 178 */ 0x4EF7_DF80_D830_D6D5L, 0x4E82_2204_DABE_992AL,
+ /* 179 */ 0x62B5_D761_0E3D_0C8BL, 0x0222_AA86_116E_3F75L,
+ /* 180 */ 0x7B63_4D39_51CC_4FADL, 0x62AB_5527_95C9_CF52L,
+ /* 181 */ 0x4D1E_1043_D31F_B1CCL, 0x4DAB_1538_BD9E_2193L,
+ /* 182 */ 0x6065_9454_C7E7_9E3FL, 0x6115_DA86_ED05_A9F8L,
+ /* 183 */ 0x787E_F969_F9E1_85CFL, 0x595B_5128_A847_1476L,
+ /* 184 */ 0x4B4F_5BE2_3C2C_F3A1L, 0x67D9_12B9_692C_6CCAL,
+ /* 185 */ 0x5E23_32DA_CB38_308AL, 0x21CF_5767_C377_87FCL,
+ /* 186 */ 0x75AB_FF91_7E06_3CACL, 0x6A43_2D41_B455_69FBL,
+ /* 187 */ 0x498B_7FBA_EEC3_E5ECL, 0x0269_FC49_10B5_623DL,
+ /* 188 */ 0x5BEE_5FA9_AA74_DF67L, 0x0304_7B5B_54E2_BACCL,
+ /* 189 */ 0x72E9_F794_1512_1740L, 0x63C5_9A32_2A1B_697FL,
+ /* 190 */ 0x47D2_3ABC_8D2B_4E88L, 0x3E5B_805F_5A51_21F0L,
+ /* 191 */ 0x59C6_C96B_B076_222AL, 0x4DF2_6077_30E5_6A6CL,
+ /* 192 */ 0x7038_7BC6_9C93_AAB5L, 0x216E_F894_FD1E_C506L,
+ /* 193 */ 0x4623_4D5C_21DC_4AB1L, 0x24E5_5B5D_1E33_3B24L,
+ /* 194 */ 0x57AC_20B3_2A53_5D5DL, 0x4E1E_B234_65C0_09EDL,
+ /* 195 */ 0x6D97_28DF_F4E8_34B5L, 0x01A6_5EC1_7F30_0C68L,
+ /* 196 */ 0x447E_798B_F911_20F1L, 0x1107_FB38_EF7E_07C1L,
+ /* 197 */ 0x559E_17EE_F755_692DL, 0x3549_FA07_2B5D_89B1L,
+ /* 198 */ 0x6B05_9DEA_B52A_C378L, 0x629C_7888_F634_EC1EL,
+ /* 199 */ 0x42E3_82B2_B13A_BA2BL, 0x3DA1_CB55_99E1_1393L,
+ /* 200 */ 0x539C_635F_5D89_68B6L, 0x2D0A_3E2B_0059_5877L,
+ /* 201 */ 0x6883_7C37_34EB_C2E3L, 0x784C_CDB5_C06F_AE95L,
+ /* 202 */ 0x4152_2DA2_8113_59CEL, 0x3B30_0091_9845_CD1DL,
+ /* 203 */ 0x51A6_B90B_2158_3042L, 0x09FC_00B5_FE57_4065L,
+ /* 204 */ 0x6610_674D_E9AE_3C52L, 0x4C7B_00E3_7DED_107EL,
+ /* 205 */ 0x7F94_8121_6419_CB67L, 0x1F99_C11C_5D68_549DL,
+ /* 206 */ 0x4FBC_D0B4_DE90_1F20L, 0x43C0_18B1_BA61_34E2L,
+ /* 207 */ 0x63AC_04E2_1634_26E8L, 0x54B0_1EDE_28F9_821BL,
+ /* 208 */ 0x7C97_061A_9BC1_30A2L, 0x69DC_2695_B337_E2A1L,
+ /* 209 */ 0x4DDE_63D0_A158_BE65L, 0x6229_981D_9002_EDA5L,
+ /* 210 */ 0x6155_FCC4_C9AE_EDFFL, 0x1AB3_FE24_F403_A90EL,
+ /* 211 */ 0x79AB_7BF5_FC1A_A97FL, 0x0160_FDAE_3104_9351L,
+ /* 212 */ 0x4C0B_2D79_BD90_A9EFL, 0x30DC_9E8C_DEA2_DC13L,
+ /* 213 */ 0x5F0D_F8D8_2CF4_D46BL, 0x1D13_C630_164B_9318L,
+ /* 214 */ 0x76D1_770E_3832_0986L, 0x0458_B7BC_1BDE_77DDL,
+ /* 215 */ 0x4A42_EA68_E31F_45F3L, 0x62B7_72D5_916B_0AEBL,
+ /* 216 */ 0x5CD3_A503_1BE7_1770L, 0x5B65_4F8A_F5C5_CDA5L,
+ /* 217 */ 0x7408_8E43_E2E0_DD4CL, 0x723E_A36D_B337_410EL,
+ /* 218 */ 0x4885_58EA_6DCC_8A50L, 0x0767_2624_9002_88A9L,
+ /* 219 */ 0x5AA6_AF25_093F_ACE4L, 0x0940_EFAD_B403_2AD3L,
+ /* 220 */ 0x7150_5AEE_4B8F_981DL, 0x0B91_2B99_2103_F588L,
+ /* 221 */ 0x46D2_38D4_EF39_BF12L, 0x173A_BB3F_B4A2_7975L,
+ /* 222 */ 0x5886_C70A_2B08_2ED6L, 0x5D09_6A0F_A1CB_17D2L,
+ /* 223 */ 0x6EA8_78CC_B5CA_3A8CL, 0x344B_C493_8A3D_DDC7L,
+ /* 224 */ 0x4529_4B7F_F19E_6497L, 0x60AF_5ADC_3666_AA9CL,
+ /* 225 */ 0x5673_9E5F_EE05_FDBDL, 0x58DB_3193_4400_5543L,
+ /* 226 */ 0x6C10_85F7_E987_7D2DL, 0x0F11_FDF8_1500_6A94L,
+ /* 227 */ 0x438A_53BA_F1F4_AE3CL, 0x196B_3EBB_0D20_429DL,
+ /* 228 */ 0x546C_E8A9_AE71_D9CBL, 0x1FC6_0E69_D068_5344L,
+ /* 229 */ 0x6988_22D4_1A0E_503EL, 0x07B7_9204_4482_6815L,
+ /* 230 */ 0x41F5_15C4_9048_F226L, 0x64D2_BB42_AAD1_810DL,
+ /* 231 */ 0x5272_5B35_B45B_2EB0L, 0x3E07_6A13_5585_E150L,
+ /* 232 */ 0x670E_F203_2171_FA5CL, 0x4D89_4498_2AE7_59A4L,
+ /* 233 */ 0x4069_5741_F4E7_3C79L, 0x7075_CADF_1AD0_9807L,
+ /* 234 */ 0x5083_AD12_7221_0B98L, 0x2C93_3D96_E184_BE08L,
+ /* 235 */ 0x64A4_9857_0EA9_4E7EL, 0x37B8_0CFC_99E5_ED8AL,
+ /* 236 */ 0x7DCD_BE6C_D253_A21EL, 0x05A6_103B_C05F_68EDL,
+ /* 237 */ 0x4EA0_9704_0374_4552L, 0x6387_CA25_583B_A194L,
+ /* 238 */ 0x6248_BCC5_0451_56A7L, 0x3C69_BCAE_AE4A_89F9L,
+ /* 239 */ 0x7ADA_EBF6_4565_AC51L, 0x2B84_2BDA_59DD_2C77L,
+ /* 240 */ 0x4CC8_D379_EB5F_8BB2L, 0x6B32_9B68_782A_3BCBL,
+ /* 241 */ 0x5FFB_0858_6637_6E9FL, 0x45FF_4242_9634_CABDL,
+ /* 242 */ 0x77F9_CA6E_7FC5_4A47L, 0x377F_12D3_3BC1_FD6DL,
+ /* 243 */ 0x4AFC_1E85_0FDB_4E6CL, 0x52AF_6BC4_0559_3E64L,
+ /* 244 */ 0x5DBB_2626_53D2_2207L, 0x675B_46B5_06AF_8DFDL,
+ /* 245 */ 0x7529_EFAF_E8C6_AA89L, 0x6132_1862_485B_717CL,
+ /* 246 */ 0x493A_35CD_F17C_2A96L, 0x0CBF_4F3D_6D39_26EEL,
+ /* 247 */ 0x5B88_C341_6DDB_353BL, 0x4FEF_230C_C887_70A9L,
+ /* 248 */ 0x726A_F411_C952_028AL, 0x43EA_EBCF_FAA9_4CD3L,
+ /* 249 */ 0x4782_D88B_1DD3_4196L, 0x4A72_D361_FCA9_D004L,
+ /* 250 */ 0x5963_8EAD_E548_11FCL, 0x1D0F_883A_7BD4_4405L,
+ /* 251 */ 0x6FBC_7259_5E9A_167BL, 0x2453_6A49_1AC9_5506L,
+ /* 252 */ 0x45D5_C777_DB20_4E0DL, 0x06B4_226D_B0BD_D524L,
+ /* 253 */ 0x574B_3955_D1E8_6190L, 0x2861_2B09_1CED_4A6DL,
+ /* 254 */ 0x6D1E_07AB_4662_79F4L, 0x3279_75CB_6428_9D08L,
+ /* 255 */ 0x4432_C4CB_0BFD_8C38L, 0x5F8B_E99F_1E99_6225L,
+ /* 256 */ 0x553F_75FD_CEFC_EF46L, 0x776E_E406_E63F_BAAEL,
+ /* 257 */ 0x6A8F_537D_42BC_2B18L, 0x554A_9D08_9FCF_A95AL,
+ /* 258 */ 0x4299_942E_49B5_9AEFL, 0x354E_A225_63E1_C9D8L,
+ /* 259 */ 0x533F_F939_DC23_01ABL, 0x22A2_4AAE_BCDA_3C4EL,
+ /* 260 */ 0x680F_F788_532B_C216L, 0x0B4A_DD5A_6C10_CB62L,
+ /* 261 */ 0x4109_FAB5_33FB_594DL, 0x670E_CA58_838A_7F1DL,
+ /* 262 */ 0x514C_7962_80FA_2FA1L, 0x20D2_7CEE_A46D_1EE4L,
+ /* 263 */ 0x659F_97BB_2138_BB89L, 0x4907_1C2A_4D88_669DL,
+ /* 264 */ 0x7F07_7DA9_E986_EA6BL, 0x7B48_E334_E0EA_8045L,
+ /* 265 */ 0x4F64_AE8A_31F4_5283L, 0x3D0D_8E01_0C92_902BL,
+ /* 266 */ 0x633D_DA2C_BE71_6724L, 0x2C50_F181_4FB7_3436L,
+ /* 267 */ 0x7C0D_50B7_EE0D_C0EDL, 0x3765_2DE1_A3A5_0143L,
+ /* 268 */ 0x4D88_5272_F4C8_9894L, 0x329F_3CAD_0647_20CAL,
+ /* 269 */ 0x60EA_670F_B1FA_BEB9L, 0x3F47_0BD8_47D8_E8FDL,
+ /* 270 */ 0x7925_00D3_9E79_6E67L, 0x6F18_CECE_59CF_233CL,
+ /* 271 */ 0x4BB7_2084_430B_E500L, 0x756F_8140_F821_7605L,
+ /* 272 */ 0x5EA4_E8A5_53CE_DE41L, 0x12CB_6191_3629_D387L,
+ /* 273 */ 0x764E_22CE_A8C2_95D1L, 0x377E_39F5_83B4_4868L,
+ /* 274 */ 0x49F0_D5C1_2979_9DA2L, 0x72AE_E439_7250_AD41L,
+ /* 275 */ 0x5C6D_0B31_73D8_050BL, 0x4F5A_9D47_CEE4_D891L,
+ /* 276 */ 0x7388_4DFD_D0CE_064EL, 0x4331_4499_C29E_0EB6L,
+ /* 277 */ 0x4835_30BE_A280_C3F1L, 0x09FE_CAE0_19A2_C932L,
+ /* 278 */ 0x5A42_7CEE_4B20_F4EDL, 0x2C7E_7D98_200B_7B7EL,
+ /* 279 */ 0x70D3_1C29_DDE9_3228L, 0x579E_1CFE_280E_5A5DL,
+ /* 280 */ 0x4683_F19A_2AB1_BF59L, 0x36C2_D21E_D908_F87BL,
+ /* 281 */ 0x5824_EE00_B55E_2F2FL, 0x6473_86A6_8F4B_3699L,
+ /* 282 */ 0x6E2E_2980_E2B5_BAFBL, 0x5D90_6850_331E_043FL,
+ /* 283 */ 0x44DC_D9F0_8DB1_94DDL, 0x2A7A_4132_1FF2_C2A8L,
+ /* 284 */ 0x5614_106C_B11D_FA14L, 0x5518_D17E_A7EF_7352L,
+ /* 285 */ 0x6B99_1487_DD65_7899L, 0x6A5F_05DE_51EB_5026L,
+ /* 286 */ 0x433F_ACD4_EA5F_6B60L, 0x127B_63AA_F333_1218L,
+ /* 287 */ 0x540F_980A_24F7_4638L, 0x171A_3C95_AFFF_D69EL,
+ /* 288 */ 0x6913_7E0C_AE35_17C6L, 0x1CE0_CBBB_1BFF_CC45L,
+ /* 289 */ 0x41AC_2EC7_ECE1_2EDBL, 0x720C_7F54_F17F_DFABL,
+ /* 290 */ 0x5217_3A79_E819_7A92L, 0x6E8F_9F2A_2DDF_D796L,
+ /* 291 */ 0x669D_0918_621F_D937L, 0x4A33_86F4_B957_CD7BL,
+ /* 292 */ 0x4022_25AF_3D53_E7C2L, 0x5E60_3458_F3D6_E06DL,
+ /* 293 */ 0x502A_AF1B_0CA8_E1B3L, 0x35F8_416F_30CC_9888L,
+ /* 294 */ 0x6435_5AE1_CFD3_1A20L, 0x2376_51CA_FCFF_BEAAL,
+ /* 295 */ 0x7D42_B19A_43C7_E0A8L, 0x2C53_E63D_BC3F_AE55L,
+ /* 296 */ 0x4E49_AF00_6A5C_EC69L, 0x1BB4_6FE6_95A7_CCF5L,
+ /* 297 */ 0x61DC_1AC0_84F4_2783L, 0x42A1_8BE0_3B11_C033L,
+ /* 298 */ 0x7A53_2170_A631_3164L, 0x3349_EED8_49D6_303FL,
+ /* 299 */ 0x4C73_F4E6_67DE_BEDEL, 0x600E_3547_2E25_DE28L,
+ /* 300 */ 0x5F90_F220_01D6_6E96L, 0x3811_C298_F9AF_55B1L,
+ /* 301 */ 0x7775_2EA8_024C_0A3CL, 0x0616_333F_381B_2B1EL,
+ /* 302 */ 0x4AA9_3D29_016F_8665L, 0x43CD_E007_8310_FAF3L,
+ /* 303 */ 0x5D53_8C73_41CB_67FEL, 0x74C1_5809_63D5_39AFL,
+ /* 304 */ 0x74A8_6F90_123E_41FEL, 0x51F1_AE0B_BCCA_881BL,
+ /* 305 */ 0x48E9_45BA_0B66_E93FL, 0x1337_0CC7_55FE_9511L,
+ /* 306 */ 0x5B23_9728_8E40_A38EL, 0x7804_CFF9_2B7E_3A55L,
+ /* 307 */ 0x71EC_7CF2_B1D0_CC72L, 0x5606_03F7_765D_C8EAL,
+ /* 308 */ 0x4733_CE17_AF22_7FC7L, 0x55C3_C27A_A9FA_9D93L,
+ /* 309 */ 0x5900_C19D_9AEB_1FB9L, 0x4B34_B319_5479_44F7L,
+ /* 310 */ 0x6F40_F205_01A5_E7A7L, 0x7E01_DFDF_A997_9635L,
+ /* 311 */ 0x4588_9743_2107_B0C8L, 0x7EC1_2BEB_C9FE_BDE1L,
+ /* 312 */ 0x56EA_BD13_E949_9CFBL, 0x1E71_76E6_BC7E_6D59L,
+ /* 313 */ 0x6CA5_6C58_E39C_043AL, 0x060D_D4A0_6B9E_08B0L,
+ /* 314 */ 0x43E7_63B7_8E41_82A4L, 0x23C8_A4E4_4342_C56EL,
+ /* 315 */ 0x54E1_3CA5_71D1_E34DL, 0x2CBA_CE1D_5413_76C9L,
+ /* 316 */ 0x6A19_8BCE_CE46_5C20L, 0x57E9_81A4_A918_547BL,
+ /* 317 */ 0x424F_F761_40EB_F994L, 0x36F1_F106_E9AF_34CDL,
+ /* 318 */ 0x52E3_F539_9126_F7F9L, 0x44AE_6D48_A41B_0201L,
+ /* 319 */ 0x679C_F287_F570_B5F7L, 0x75DA_089A_CD21_C281L,
+ /* 320 */ 0x40C2_1794_F966_71BAL, 0x79A8_4560_C035_1991L,
+ /* 321 */ 0x50F2_9D7A_37C0_0E29L, 0x5812_56B8_F042_5FF5L,
+ /* 322 */ 0x652F_44D8_C5B0_11B4L, 0x0E16_EC67_2C52_F7F2L,
+ /* 323 */ 0x7E7B_160E_F71C_1621L, 0x119C_A780_F767_B5EEL,
+ /* 324 */ 0x4F0C_EDC9_5A71_8DD4L, 0x5B01_E8B0_9AA0_D1B5L,
+ };
+
+}
diff --git a/test/jdk/java/lang/Floating/DoubleToDecString.java b/test/jdk/java/lang/Floating/DoubleToDecString.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/DoubleToDecString.java
@@ -0,0 +1,312 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.util.Random;
+
+import static java.lang.Math.*;
+import static java.lang.Double.*;
+
+/*
+ * @test
+ * @bug 8202555
+
+ * @author Raffaello Giulietti
+ */
+public class DoubleToDecString {
+
+ private static final boolean FAILURE_THROWS_EXCEPTION = true;
+
+ private static void assertTrue(boolean ok, double v, String s) {
+ if (ok) {
+ return;
+ }
+ String message = "Double::toString applied to " +
+ "Double.longBitsToDouble(" +
+ "0x" + Long.toHexString(doubleToRawLongBits(v)) + "L" +
+ ")" +
+ " returns " +
+ "\"" + s + "\"" +
+ ", which is not correct according to the specification.";
+ if (FAILURE_THROWS_EXCEPTION) {
+ throw new RuntimeException(message);
+ }
+ System.err.println(message);
+ }
+
+ private static void toDec(double v) {
+ String s = Double.toString(v);
+ assertTrue(new DoubleToStringChecker(v, s).isOK(), v, s);
+ }
+
+ private static void testExtremeValues() {
+ toDec(NEGATIVE_INFINITY);
+ toDec(-MAX_VALUE);
+ toDec(-MIN_NORMAL);
+ toDec(-MIN_VALUE);
+ toDec(-0.0);
+ toDec(0.0);
+ toDec(MIN_VALUE);
+ toDec(MIN_NORMAL);
+ toDec(MAX_VALUE);
+ toDec(POSITIVE_INFINITY);
+ toDec(NaN);
+ /*
+ Quiet NaNs have the most significant bit of the mantissa as 1,
+ while signaling NaNs have it as 0.
+ Exercise 4 combinations of quiet/signaling NaNs and
+ "positive/negative" NaNs
+ */
+ toDec(longBitsToDouble(0x7FF8_0000_0000_0001L));
+ toDec(longBitsToDouble(0x7FF0_0000_0000_0001L));
+ toDec(longBitsToDouble(0xFFF8_0000_0000_0001L));
+ toDec(longBitsToDouble(0xFFF0_0000_0000_0001L));
+ }
+
+ /*
+ A few "powers of 10" are incorrectly rendered by the JDK.
+ The rendering is either too long or it is not the closest decimal.
+ */
+ private static void testPowersOf10() {
+ for (int e = -323; e <= 309; ++e) {
+ toDec(parseDouble("1e" + e));
+ }
+ }
+
+ /*
+ Many powers of 2 are incorrectly rendered by the JDK.
+ The rendering is either too long or it is not the closest decimal.
+ */
+ private static void testPowersOf2() {
+ for (double v = MIN_VALUE; v <= MAX_VALUE; v *= 2.0) {
+ toDec(v);
+ }
+ }
+
+ /*
+ There are tons of doubles that are rendered incorrectly by the JDK.
+ While the renderings correctly round back to the original value,
+ they are longer than needed or are not the closest decimal to the double.
+ Here are just a very few examples.
+ */
+ private static final String[] Anomalies = {
+ // JDK renders these, and others, with 18 digits!
+ "2.82879384806159E17", "1.387364135037754E18",
+ "1.45800632428665E17",
+
+ // JDK renders these longer than needed.
+ "1.6E-322", "6.3E-322",
+ "7.3879E20", "2.0E23", "7.0E22", "9.2E22",
+ "9.5E21", "3.1E22", "5.63E21", "8.41E21",
+
+ // JDK does not render these, and many others, as the closest.
+ "9.9E-324", "9.9E-323",
+ "1.9400994884341945E25", "3.6131332396758635E25",
+ "2.5138990223946153E25",
+ };
+
+ private static void testSomeAnomalies() {
+ for (String dec : Anomalies) {
+ toDec(parseDouble(dec));
+ }
+ }
+
+ /*
+ Values are from
+ Paxson V, "A Program for Testing IEEE Decimal–Binary Conversion"
+ */
+ private static final double[] PaxsonSignificands = {
+ 8_511_030_020_275_656L,
+ 5_201_988_407_066_741L,
+ 6_406_892_948_269_899L,
+ 8_431_154_198_732_492L,
+ 6_475_049_196_144_587L,
+ 8_274_307_542_972_842L,
+ 5_381_065_484_265_332L,
+ 6_761_728_585_499_734L,
+ 7_976_538_478_610_756L,
+ 5_982_403_858_958_067L,
+ 5_536_995_190_630_837L,
+ 7_225_450_889_282_194L,
+ 7_225_450_889_282_194L,
+ 8_703_372_741_147_379L,
+ 8_944_262_675_275_217L,
+ 7_459_803_696_087_692L,
+ 6_080_469_016_670_379L,
+ 8_385_515_147_034_757L,
+ 7_514_216_811_389_786L,
+ 8_397_297_803_260_511L,
+ 6_733_459_239_310_543L,
+ 8_091_450_587_292_794L,
+
+ 6_567_258_882_077_402L,
+ 6_712_731_423_444_934L,
+ 6_712_731_423_444_934L,
+ 5_298_405_411_573_037L,
+ 5_137_311_167_659_507L,
+ 6_722_280_709_661_868L,
+ 5_344_436_398_034_927L,
+ 8_369_123_604_277_281L,
+ 8_995_822_108_487_663L,
+ 8_942_832_835_564_782L,
+ 8_942_832_835_564_782L,
+ 8_942_832_835_564_782L,
+ 6_965_949_469_487_146L,
+ 6_965_949_469_487_146L,
+ 6_965_949_469_487_146L,
+ 7_487_252_720_986_826L,
+ 5_592_117_679_628_511L,
+ 8_887_055_249_355_788L,
+ 6_994_187_472_632_449L,
+ 8_797_576_579_012_143L,
+ 7_363_326_733_505_337L,
+ 8_549_497_411_294_502L,
+ };
+
+ private static final int[] PaxsonExponents = {
+ -342,
+ -824,
+ 237,
+ 72,
+ 99,
+ 726,
+ -456,
+ -57,
+ 376,
+ 377,
+ 93,
+ 710,
+ 709,
+ 117,
+ -1,
+ -707,
+ -381,
+ 721,
+ -828,
+ -345,
+ 202,
+ -473,
+
+ 952,
+ 535,
+ 534,
+ -957,
+ -144,
+ 363,
+ -169,
+ -853,
+ -780,
+ -383,
+ -384,
+ -385,
+ -249,
+ -250,
+ -251,
+ 548,
+ 164,
+ 665,
+ 690,
+ 588,
+ 272,
+ -448,
+ };
+
+ private static void testPaxson() {
+ for (int i = 0; i < PaxsonSignificands.length; ++i) {
+ toDec(scalb(PaxsonSignificands[i], PaxsonExponents[i]));
+ }
+ }
+
+ /*
+ Tests all integers of the form yx_xxx_000_000_000_000_000, y != 0.
+ These are all exact doubles.
+ */
+ private static void testLongs() {
+ for (int i = 10_000; i < 100_000; ++i) {
+ toDec(i * 1e15);
+ }
+ }
+
+ /*
+ Tests all integers up to 100_000.
+ These are all exact doubles.
+ */
+ private static void testInts() {
+ for (int i = 0; i <= 1_000_000; ++i) {
+ toDec(i);
+ }
+ }
+
+ /*
+ Random doubles over the whole range
+ */
+ private static void testRandom() {
+ Random r = new Random();
+ for (int i = 0; i < 1_000_000; ++i) {
+ toDec(longBitsToDouble(r.nextLong()));
+ }
+ }
+
+ /*
+ Random doubles over the integer range [0, 10^15).
+ These integers are all exact doubles.
+ */
+ private static void testRandomUnit() {
+ Random r = new Random();
+ for (int i = 0; i < 100_000; ++i) {
+ toDec(r.nextLong() % 1_000_000_000_000_000L);
+ }
+ }
+
+ /*
+ Random doubles over the range [0, 10^15) as "multiples" of 1e-3
+ */
+ private static void testRandomMilli() {
+ Random r = new Random();
+ for (int i = 0; i < 100_000; ++i) {
+ toDec(r.nextLong() % 1_000_000_000_000_000_000L / 1e3);
+ }
+ }
+
+ /*
+ Random doubles over the range [0, 10^15) as "multiples" of 1e-6
+ */
+ private static void testRandomMicro() {
+ Random r = new Random();
+ for (int i = 0; i < 100_000; ++i) {
+ toDec((r.nextLong() & 0x7FFF_FFFF_FFFF_FFFFL) / 1e6);
+ }
+ }
+
+ public static void main(String[] args) {
+ testExtremeValues();
+ testSomeAnomalies();
+ testPowersOf2();
+ testPowersOf10();
+ testPaxson();
+ testInts();
+ testLongs();
+ testRandom();
+ testRandomUnit();
+ testRandomMilli();
+ testRandomMicro();
+ }
+
+}
diff --git a/test/jdk/java/lang/Floating/DoubleToStringChecker.java b/test/jdk/java/lang/Floating/DoubleToStringChecker.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/DoubleToStringChecker.java
@@ -0,0 +1,91 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.math.BigDecimal;
+
+/**
+ * @author Raffaello Giulietti
+ */
+class DoubleToStringChecker extends StringChecker {
+
+ private double v;
+
+ DoubleToStringChecker(double v, String s) {
+ super(s);
+ this.v = v;
+ }
+
+ @Override
+ BigDecimal toBigDecimal() {
+ return new BigDecimal(v);
+ }
+
+ @Override
+ boolean recovers(BigDecimal b) {
+ return b.doubleValue() == v;
+ }
+
+ @Override
+ boolean recovers(String s) {
+ return Double.parseDouble(s) == v;
+ }
+
+ @Override
+ int maxExp() {
+ return 309;
+ }
+
+ @Override
+ int minExp() {
+ return -323;
+ }
+
+ @Override
+ int maxLen10() {
+ return 17;
+ }
+
+ @Override
+ boolean isZero() {
+ return v == 0;
+ }
+
+ @Override
+ boolean isInfinity() {
+ return v == Double.POSITIVE_INFINITY;
+ }
+
+ @Override
+ void invert() {
+ v = -v;
+ }
+
+ @Override
+ boolean isNegative() {
+ return Double.doubleToRawLongBits(v) < 0;
+ }
+
+ @Override
+ boolean isNaN() {
+ return v != v;
+ }
+
+}
diff --git a/test/jdk/java/lang/Floating/FloatToDecString.java b/test/jdk/java/lang/Floating/FloatToDecString.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/FloatToDecString.java
@@ -0,0 +1,144 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.util.Random;
+
+import static java.lang.Float.*;
+
+/*
+ * @test
+
+ * @author Raffaello Giulietti
+ */
+public class FloatToDecString {
+
+ private static final boolean FAILURE_THROWS_EXCEPTION = true;
+
+ private static void assertTrue(boolean ok, float v, String s) {
+ if (ok) {
+ return;
+ }
+ String message = "Float::toString applied to " +
+ "Float.intBitsToFloat(" +
+ "0x" + Integer.toHexString(floatToRawIntBits(v)) +
+ ")" +
+ " returns " +
+ "\"" + s + "\"" +
+ ", which is not correct according to the specification.";
+ if (FAILURE_THROWS_EXCEPTION) {
+ throw new RuntimeException(message);
+ }
+ System.err.println(message);
+ }
+
+ private static void toDec(float v) {
+ String s = Float.toString(v);
+ assertTrue(new FloatToStringChecker(v, s).isOK(), v, s);
+ }
+
+ /*
+ MIN_NORMAL is incorrectly rendered by the JDK.
+ */
+ private static void testExtremeValues() {
+ toDec(NEGATIVE_INFINITY);
+ toDec(-MAX_VALUE);
+ toDec(-MIN_NORMAL);
+ toDec(-MIN_VALUE);
+ toDec(-0.0f);
+ toDec(0.0f);
+ toDec(MIN_VALUE);
+ toDec(MIN_NORMAL);
+ toDec(MAX_VALUE);
+ toDec(POSITIVE_INFINITY);
+ toDec(NaN);
+ /*
+ Quiet NaNs have the most significant bit of the mantissa as 1,
+ while signaling NaNs have it as 0.
+ Exercise 4 combinations of quiet/signaling NaNs and
+ "positive/negative" NaNs.
+ */
+ toDec(intBitsToFloat(0x7FC0_0001));
+ toDec(intBitsToFloat(0x7F80_0001));
+ toDec(intBitsToFloat(0xFFC0_0001));
+ toDec(intBitsToFloat(0xFF80_0001));
+ }
+
+ /*
+ Many "powers of 10" are incorrectly rendered by the JDK.
+ The rendering is either too long or it is not the closest decimal.
+ */
+ private static void testPowersOf10() {
+ for (int e = -44; e <= 39; ++e) {
+ toDec(parseFloat("1e" + e));
+ }
+ }
+
+ /*
+ Many powers of 2 are incorrectly rendered by the JDK.
+ The rendering is either too long or it is not the closest decimal.
+ */
+ private static void testPowersOf2() {
+ for (float v = MIN_VALUE; v <= MAX_VALUE; v *= 2.0) {
+ toDec(v);
+ }
+ }
+
+ /*
+ Tests all integers up to 1_000_000.
+ These are all exact floats.
+ */
+ private static void testInts() {
+ for (int i = 0; i <= 1_000_000; ++i) {
+ toDec(i);
+ }
+ }
+
+ /*
+ Random floats over the whole range.
+ */
+ private static void testRandom() {
+ Random r = new Random();
+ for (int i = 0; i < 1_000_000; ++i) {
+ toDec(intBitsToFloat(r.nextInt()));
+ }
+ }
+
+ /*
+ All, really all, possible floats. Takes between 90 and 120 minutes.
+ */
+ private static void testAll() {
+ int bits = Integer.MIN_VALUE;
+ for (; bits < Integer.MAX_VALUE; ++bits) {
+ toDec(Float.intBitsToFloat(bits));
+ }
+ toDec(Float.intBitsToFloat(bits));
+ }
+
+ public static void main(String[] args) {
+// testAll();
+ testExtremeValues();
+ testPowersOf2();
+ testPowersOf10();
+ testInts();
+ testRandom();
+ }
+
+}
diff --git a/test/jdk/java/lang/Floating/FloatToStringChecker.java b/test/jdk/java/lang/Floating/FloatToStringChecker.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/FloatToStringChecker.java
@@ -0,0 +1,91 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.math.BigDecimal;
+
+/**
+ * @author Raffaello Giulietti
+ */
+class FloatToStringChecker extends StringChecker {
+
+ private float v;
+
+ FloatToStringChecker(float v, String s) {
+ super(s);
+ this.v = v;
+ }
+
+ @Override
+ BigDecimal toBigDecimal() {
+ return new BigDecimal(v);
+ }
+
+ @Override
+ boolean recovers(BigDecimal b) {
+ return b.floatValue() == v;
+ }
+
+ @Override
+ boolean recovers(String s) {
+ return Float.parseFloat(s) == v;
+ }
+
+ @Override
+ int maxExp() {
+ return 39;
+ }
+
+ @Override
+ int minExp() {
+ return -44;
+ }
+
+ @Override
+ int maxLen10() {
+ return 9;
+ }
+
+ @Override
+ boolean isZero() {
+ return v == 0;
+ }
+
+ @Override
+ boolean isInfinity() {
+ return v == Float.POSITIVE_INFINITY;
+ }
+
+ @Override
+ void invert() {
+ v = -v;
+ }
+
+ @Override
+ boolean isNegative() {
+ return Float.floatToRawIntBits(v) < 0;
+ }
+
+ @Override
+ boolean isNaN() {
+ return v != v;
+ }
+
+}
diff --git a/test/jdk/java/lang/Floating/StringChecker.java b/test/jdk/java/lang/Floating/StringChecker.java
new file mode 100644
--- /dev/null
+++ b/test/jdk/java/lang/Floating/StringChecker.java
@@ -0,0 +1,348 @@
+/*
+ * Copyright (c) 2018, Raffaello Giulietti. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ * This particular file is subject to the "Classpath" exception as provided
+ * in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+import java.io.IOException;
+import java.io.StringReader;
+import java.math.BigDecimal;
+
+/**
+ * @author Raffaello Giulietti
+ */
+abstract class StringChecker {
+
+ private String s;
+ private long c;
+ private int q;
+ private int len10;
+
+ StringChecker(String s) {
+ this.s = s;
+ }
+
+ /*
+ Returns whether s syntactically meets the expected output of
+ Double::toString. It is restricted to finite positive outputs.
+ It is an unusually long method but rather straightforward, too.
+ Many conditionals could be merged, but KISS here.
+ */
+ private boolean parse() {
+ try {
+ // first determine interesting boundaries in the string
+ StringReader r = new StringReader(s);
+ int ch = r.read();
+
+ int i = 0;
+ while (ch == '0') {
+ ++i;
+ ch = r.read();
+ }
+ // i is just after zeroes starting the integer
+
+ int p = i;
+ while ('0' <= ch && ch <= '9') {
+ c = 10 * c + (ch - '0');
+ if (c < 0) {
+ return false;
+ }
+ ++len10;
+ ++p;
+ ch = r.read();
+ }
+ // p is just after digits ending the integer
+
+ int fz = p;
+ if (ch == '.') {
+ ++fz;
+ ch = r.read();
+ }
+ // fz is just after a decimal '.'
+
+ int f = fz;
+ while (ch == '0') {
+ c = 10 * c + (ch - '0');
+ if (c < 0) {
+ return false;
+ }
+ ++len10;
+ ++f;
+ ch = r.read();
+ }
+ // f is just after zeroes starting the fraction
+
+ if (c == 0) {
+ len10 = 0;
+ }
+ int x = f;
+ while ('0' <= ch && ch <= '9') {
+ c = 10 * c + (ch - '0');
+ if (c < 0) {
+ return false;
+ }
+ ++len10;
+ ++x;
+ ch = r.read();
+ }
+ // x is just after digits ending the fraction
+
+ int g = x;
+ if (ch == 'E') {
+ ++g;
+ ch = r.read();
+ }
+ // g is just after an exponent indicator 'E'
+
+ int ez = g;
+ if (ch == '-') {
+ ++ez;
+ ch = r.read();
+ }
+ // ez is just after a '-' sign in the exponent
+
+ int e = ez;
+ while (ch == '0') {
+ ++e;
+ ch = r.read();
+ }
+ // e is just after zeroes starting the exponent
+
+ int z = e;
+ while ('0' <= ch && ch <= '9') {
+ q = 10 * q + (ch - '0');
+ if (q < 0) {
+ return false;
+ }
+ ++z;
+ ch = r.read();
+ }
+ // z is just after digits ending the exponent
+
+ // No other char after the number
+ if (z != s.length()) {
+ return false;
+ }
+
+ // The integer must be present
+ if (p == 0) {
+ return false;
+ }
+
+ // The decimal '.' must be present
+ if (fz == p) {
+ return false;
+ }
+
+ // The fraction must be present
+ if (x == fz) {
+ return false;
+ }
+
+ // The fraction is not 0 or it consists of exactly one 0
+ if (f == x && f - fz > 1) {
+ return false;
+ }
+
+ // Plain notation, no exponent
+ if (x == z) {
+ // At most one 0 starting the integer
+ if (i > 1) {
+ return false;
+ }
+
+ // If the integer is 0, at most 2 zeroes start the fraction
+ if (i == 1 && f - fz > 2) {
+ return false;
+ }
+
+ // The integer cannot have more than 7 digits
+ if (p > 7) {
+ return false;
+ }
+
+ q = fz - x;
+
+ // OK for plain notation
+ return true;
+ }
+
+ // Computerized scientific notation
+
+ // The integer has exactly one nonzero digit
+ if (i != 0 || p != 1) {
+ return false;
+ }
+
+ //
+ // There must be an exponent indicator
+ if (x == g) {
+ return false;
+ }
+
+ // There must be an exponent
+ if (ez == z) {
+ return false;
+ }
+
+ // The exponent must not start with zeroes
+ if (ez != e) {
+ return false;
+ }
+
+ if (g != ez) {
+ q = -q;
+ }
+
+ // The exponent must not lie in [-3, 7)
+ if (-3 <= q && q < 7) {
+ return false;
+ }
+
+ q += fz - x;
+
+ // OK for computerized scientific notation
+ return true;
+ } catch (IOException ex) {
+ // An IOException on a StringReader??? Please...
+ return false;
+ }
+ }
+
+ boolean isOK() {
+ if (isNaN()) {
+ return s.equals("NaN");
+ }
+ if (isNegative()) {
+ if (s.isEmpty() || s.charAt(0) != '-') {
+ return false;
+ }
+ invert();
+ s = s.substring(1);
+ }
+ if (isInfinity()) {
+ return s.equals("Infinity");
+ }
+ if (isZero()) {
+ return s.equals("0.0");
+ }
+ if (!parse()) {
+ return false;
+ }
+ if (len10 < 2) {
+ c *= 10;
+ q -= 1;
+ len10 += 1;
+ }
+ if (2 > len10 || len10 > maxLen10()) {
+ return false;
+ }
+
+ // The exponent is bounded
+ if (minExp() > q + len10 || q + len10 > maxExp()) {
+ return false;
+ }
+
+ // s must recover v
+ try {
+ if (!recovers(s)) {
+ return false;
+ }
+ } catch (NumberFormatException e) {
+ return false;
+ }
+
+ // Get rid of trailing zeroes, still ensuring at least 2 digits
+ while (len10 > 2 && c % 10 == 0) {
+ c /= 10;
+ q += 1;
+ len10 -= 1;
+ }
+
+ if (len10 > 2) {
+ // Try with a shorter number less than v...
+ if (recovers(BigDecimal.valueOf(c / 10, -q - 1))) {
+ return false;
+ }
+
+ // ... and with a shorter number greater than v
+ if (recovers(BigDecimal.valueOf(c / 10 + 1, -q - 1))) {
+ return false;
+ }
+ }
+
+ // Try with the decimal predecessor...
+ BigDecimal dp = c == 10 ?
+ BigDecimal.valueOf(99, -q + 1) :
+ BigDecimal.valueOf(c - 1, -q);
+ if (recovers(dp)) {
+ BigDecimal bv = toBigDecimal();
+ BigDecimal deltav = bv.subtract(BigDecimal.valueOf(c, -q));
+ if (deltav.signum() >= 0) {
+ return true;
+ }
+ BigDecimal delta = dp.subtract(bv);
+ if (delta.signum() >= 0) {
+ return false;
+ }
+ int cmp = deltav.compareTo(delta);
+ return cmp > 0 || cmp == 0 && (c & 0x1) == 0;
+ }
+
+ // ... and with the decimal successor
+ BigDecimal ds = BigDecimal.valueOf(c + 1, -q);
+ if (recovers(ds)) {
+ BigDecimal bv = toBigDecimal();
+ BigDecimal deltav = bv.subtract(BigDecimal.valueOf(c, -q));
+ if (deltav.signum() <= 0) {
+ return true;
+ }
+ BigDecimal delta = ds.subtract(bv);
+ if (delta.signum() <= 0) {
+ return false;
+ }
+ int cmp = deltav.compareTo(delta);
+ return cmp < 0 || cmp == 0 && (c & 0x1) == 0;
+ }
+
+ return true;
+ }
+
+ abstract BigDecimal toBigDecimal();
+
+ abstract boolean recovers(BigDecimal b);
+
+ abstract boolean recovers(String s);
+
+ abstract int maxExp();
+
+ abstract int minExp();
+
+ abstract int maxLen10();
+
+ abstract boolean isZero();
+
+ abstract boolean isInfinity();
+
+ abstract void invert();
+
+ abstract boolean isNegative();
+
+ abstract boolean isNaN();
+
+}
More information about the core-libs-dev
mailing list