Different costs of accessing volatile reference and array
Сергей Цыпанов
sergei.tsypanov at yandex.ru
Wed Aug 16 11:37:42 UTC 2023
Hello,
I was measuring costs of hoisting volatile access out of the loop and found out, that there's a difference in numbers for arrays and "plain" references.
Here's the benchmark for array:
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(time = 2, iterations = 5)
@Measurement(time = 2, iterations = 5)
@Fork(value = 4, jvmArgs = "-Xmx1g")
public class VolatileArrayInLoopBenchmark {
@Benchmark
public int accessVolatileInLoop(Data data) {
int sum = 0;
for (int i = 0; i < data.count; i++) {
sum += data.ints[i];
}
return sum;
}
@Benchmark
public int hoistVolatileFromLoop(Data data) {
int sum = 0;
int[] ints = data.ints;
for (int i = 0; i < data.count; i++) {
sum += ints[i];
}
return sum;
}
@State(Scope.Benchmark)
public static class Data {
@Param({"1", "10", "100"})
private int count;
private volatile int[] ints;
@Setup
public void setUp() {
int[] ints = new int[count];
for (int i = 0; i < ints.length; i++) {
ints[i] = ThreadLocalRandom.current().nextInt();
}
this.ints = ints;
}
}
}
and this one is for reference:
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(time = 2, iterations = 5)
@Measurement(time = 2, iterations = 5)
@Fork(value = 4, jvmArgs = "-Xmx1g")
public class VolatileFieldInLoopBenchmark {
@Benchmark
public int accessVolatileInLoop(Data data) {
int sum = 0;
for (int i = 0; i < data.count; i++) {
sum += data.value;
}
return sum;
}
@Benchmark
public int hoistVolatileFromLoop(Data data) {
int sum = 0;
int value = data.value;
for (int i = 0; i < data.count; i++) {
sum += value;
}
return sum;
}
@State(Scope.Benchmark)
public static class Data {
private final ThreadLocalRandom random = ThreadLocalRandom.current();
private volatile int value = random.nextInt();
@Param({"1", "10", "100"})
private int count;
}
}
>From measurement results it looks like volatile array access is cheaper than "plain" reference access:
Java 19
Benchmark (count) Mode Cnt Score Error Units
VolatileArrayInLoopBenchmark.accessVolatileInLoop 1 avgt 20 2.110 ± 0.404 ns/op
VolatileArrayInLoopBenchmark.accessVolatileInLoop 10 avgt 20 14.836 ± 2.825 ns/op
VolatileArrayInLoopBenchmark.accessVolatileInLoop 100 avgt 20 146.497 ± 25.786 ns/op
VolatileArrayInLoopBenchmark.hoistVolatileFromLoop 1 avgt 20 3.006 ± 0.686 ns/op
VolatileArrayInLoopBenchmark.hoistVolatileFromLoop 10 avgt 20 6.222 ± 1.215 ns/op
VolatileArrayInLoopBenchmark.hoistVolatileFromLoop 100 avgt 20 33.262 ± 6.579 ns/op
VolatileFieldInLoopBenchmark.accessVolatileInLoop 1 avgt 20 1.823 ± 0.382 ns/op
VolatileFieldInLoopBenchmark.accessVolatileInLoop 10 avgt 20 10.259 ± 2.874 ns/op
VolatileFieldInLoopBenchmark.accessVolatileInLoop 100 avgt 20 98.648 ± 18.500 ns/op
VolatileFieldInLoopBenchmark.hoistVolatileFromLoop 1 avgt 20 2.189 ± 0.412 ns/op
VolatileFieldInLoopBenchmark.hoistVolatileFromLoop 10 avgt 20 4.734 ± 0.891 ns/op
VolatileFieldInLoopBenchmark.hoistVolatileFromLoop 100 avgt 20 7.126 ± 1.309 ns/op
Java 20
Benchmark (count) Mode Cnt Score Error Units
VolatileArrayInLoopBenchmark.accessVolatileInLoop 1 avgt 20 1.714 ± 0.066 ns/op
VolatileArrayInLoopBenchmark.accessVolatileInLoop 10 avgt 20 10.703 ± 0.148 ns/op
VolatileArrayInLoopBenchmark.accessVolatileInLoop 100 avgt 20 109.001 ± 1.866 ns/op
VolatileArrayInLoopBenchmark.hoistVolatileFromLoop 1 avgt 20 2.408 ± 0.224 ns/op
VolatileArrayInLoopBenchmark.hoistVolatileFromLoop 10 avgt 20 4.678 ± 0.060 ns/op
VolatileArrayInLoopBenchmark.hoistVolatileFromLoop 100 avgt 20 24.711 ± 1.091 ns/op
VolatileFieldInLoopBenchmark.accessVolatileInLoop 1 avgt 20 1.366 ± 0.105 ns/op
VolatileFieldInLoopBenchmark.accessVolatileInLoop 10 avgt 20 7.388 ± 0.119 ns/op
VolatileFieldInLoopBenchmark.accessVolatileInLoop 100 avgt 20 74.630 ± 1.163 ns/op
VolatileFieldInLoopBenchmark.hoistVolatileFromLoop 1 avgt 20 1.653 ± 0.035 ns/op
VolatileFieldInLoopBenchmark.hoistVolatileFromLoop 10 avgt 20 3.138 ± 0.040 ns/op
VolatileFieldInLoopBenchmark.hoistVolatileFromLoop 100 avgt 20 4.945 ± 0.177 ns/op
So my question is why is volatile reference access is relatively more expensive than volatile array access?
More information about the core-libs-dev
mailing list