RFR: 8293198: [vectorapi] Improve the implementation of VectorMask.indexInRange()

Xiaohong Gong xgong at openjdk.org
Wed Jan 18 09:08:14 UTC 2023


The Vector API `"indexInRange(int offset, int limit)"` is used
to compute a vector mask whose lanes are set to true if the
index of the lane is inside the range specified by the `"offset"`
and `"limit"` arguments, otherwise the lanes are set to false.

There are two special cases for this API:
 1) If `"offset >= 0 && offset >= limit"`, all the lanes of the
generated mask are false.
 2) If` "offset >= 0 && limit - offset >= vlength"`, all the
lanes of the generated mask are true. Note that `"vlength"` is
the number of vector lanes.

For such special cases, we can simply use `"maskAll(false|true)"`
to implement the API. Otherwise, the original comparison with
`"iota" `vector is needed. And for further optimization, we have
optimal instruction supported by SVE (i.e. whilelo [1]), which
can implement the API directly if the `"offset >= 0"`.

As a summary, to optimize the API, we can use the if-else branches
to handle the specific cases in java level and intrinsify the
remaining case by C2 compiler:


  public VectorMask<E> indexInRange(int offset, int limit) {
      if (offset < 0) {
          return this.and(indexInRange0Helper(offset, limit));
      } else if (offset >= limit) {
          return this.and(vectorSpecies().maskAll(false));
      } else if (limit - offset >= length()) {
          return this.and(vectorSpecies().maskAll(true));
      }
      return this.and(indexInRange0(offset, limit));
 }


The last part (i.e. `"indexInRange0"`) in the above implementation
is expected to be intrinsified by C2 compiler if the necessary IRs
are supported. Otherwise, it will fall back to the original API
implementation (i.e. `"indexInRange0Helper"`). Regarding to the
intrinsifaction, the compiler will generate `"VectorMaskGen"` IR
with "limit - offset" as the input if the current platform supports
it. Otherwise, it generates `"VectorLoadConst + VectorMaskCmp"` based
on `"iota < limit - offset"`.

For the following java code which uses `"indexInRange"`:


static final VectorSpecies<Double> SPECIES =
                                   DoubleVector.SPECIES_PREFERRED;
static final int LENGTH = 1027;

public static double[] da;
public static double[] db;
public static double[] dc;

private static void func() {
    for (int i = 0; i < LENGTH; i += SPECIES.length()) {
        var m = SPECIES.indexInRange(i, LENGTH);
        var av = DoubleVector.fromArray(SPECIES, da, i, m);
        av.lanewise(VectorOperators.NEG).intoArray(dc, i, m);
    }
}


The core code generated with SVE 256-bit vector size is:


  ptrue   p2.d                  ; maskAll(true)
  ...
LOOP:
  ...
  sub     w11, w13, w14         ; limit - offset
  cmp     w14, w13
  b.cs    LABEL-1               ; if (offset >= limit) => uncommon-trap
  cmp     w11, #0x4
  b.lt    LABEL-2               ; if (limit - offset < vlength)
  mov     p1.b, p2.b
LABEL-3:
  ld1d    {z16.d}, p1/z, [x10]  ; load vector masked
  ...
  cmp     w14, w29
  b.cc    LOOP
  ...
LABEL-2:
  whilelo p1.d, x16, x10        ; VectorMaskGen
  ...
  b       LABEL-3
  ...
LABEL-1:
  uncommon-trap


Please note that if the array size `LENGTH` is aligned with
the vector size 256 (i.e. `LENGTH = 1024`), the branch "LABEL-2"
will be optimized out by compiler and it becomes another
uncommon-trap.

For NEON, the main CFG is the same with above. But the compiler
intrinsification is different. Here is the code:


  sub     x10, x10, x12          ; limit - offset
  scvtf   d16, x10
  dup     v16.2d, v16.d[0]       ; replicateD

  mov     x8, #0xd8d0
  movk    x8, #0x84cb, lsl #16
  movk    x8, #0xffff, lsl #32
  ldr     q17, [x8], #0          ; load the "iota" const vector
  fcmgt   v18.2d, v16.2d, v17.2d ; mask = iota < limit - offset


Here is the performance data of the new added benchmark on an ARM
SVE 256-bit platform:


Benchmark                               (size)  Before    After   Units
IndexInRangeBenchmark.byteIndexInRange   1024 11203.697 41404.431 ops/ms
IndexInRangeBenchmark.byteIndexInRange   1027  2365.920  8747.004 ops/ms
IndexInRangeBenchmark.doubleIndexInRange 1024  1227.505  6092.194 ops/ms
IndexInRangeBenchmark.doubleIndexInRange 1027   351.215  1156.683 ops/ms
IndexInRangeBenchmark.floatIndexInRange  1024  1468.876 11032.580 ops/ms
IndexInRangeBenchmark.floatIndexInRange  1027   699.645  2439.671 ops/ms
IndexInRangeBenchmark.intIndexInRange    1024  2842.187 11903.544 ops/ms
IndexInRangeBenchmark.intIndexInRange    1027   689.866  2547.424 ops/ms
IndexInRangeBenchmark.longIndexInRange   1024  1394.135  5902.973 ops/ms
IndexInRangeBenchmark.longIndexInRange   1027   355.621  1189.458 ops/ms
IndexInRangeBenchmark.shortIndexInRange  1024  5521.468 21578.340 ops/ms
IndexInRangeBenchmark.shortIndexInRange  1027  1264.816  4640.504 ops/ms


And the performance data with ARM NEON:


Benchmark                               (size)  Before    After   Units
IndexInRangeBenchmark.byteIndexInRange   1024  4026.548 15562.880 ops/ms
IndexInRangeBenchmark.byteIndexInRange   1027   305.314   576.559 ops/ms
IndexInRangeBenchmark.doubleIndexInRange 1024   289.224  2244.080 ops/ms
IndexInRangeBenchmark.doubleIndexInRange 1027    39.740    76.499 ops/ms
IndexInRangeBenchmark.floatIndexInRange  1024   675.264  4457.470 ops/ms
IndexInRangeBenchmark.floatIndexInRange  1027    79.918   144.952 ops/ms
IndexInRangeBenchmark.intIndexInRange    1024   740.139  4014.583 ops/ms
IndexInRangeBenchmark.intIndexInRange    1027    78.608   147.903 ops/ms
IndexInRangeBenchmark.longIndexInRange   1024   400.683  2209.551 ops/ms
IndexInRangeBenchmark.longIndexInRange   1027    41.146    69.599 ops/ms
IndexInRangeBenchmark.shortIndexInRange  1024  1821.736  8153.546 ops/ms
IndexInRangeBenchmark.shortIndexInRange  1027   158.810   243.205 ops/ms


The performance improves about `3.5x ~ 7.5x` on the vector size aligned
(1024 size) benchmarks both with NEON and SVE. And it improves about
`3.5x/1.8x` on the vector size not aligned (1027 size) benchmarks with
SVE/NEON respectively. We can also observe the similar improvement on
the x86 platforms.

[1] https://developer.arm.com/documentation/ddi0596/2020-12/SVE-Instructions/WHILELO--While-incrementing-unsigned-scalar-lower-than-scalar-

-------------

Commit messages:
 - 8293198: [vectorapi] Improve the implementation of VectorMask.indexInRange()

Changes: https://git.openjdk.org/jdk/pull/12064/files
 Webrev: https://webrevs.openjdk.org/?repo=jdk&pr=12064&range=00
  Issue: https://bugs.openjdk.org/browse/JDK-8293198
  Stats: 665 lines in 41 files changed: 622 ins; 0 del; 43 mod
  Patch: https://git.openjdk.org/jdk/pull/12064.diff
  Fetch: git fetch https://git.openjdk.org/jdk pull/12064/head:pull/12064

PR: https://git.openjdk.org/jdk/pull/12064


More information about the core-libs-dev mailing list