/* * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package mytrigo; /** * Port of the "Freely Distributable Math Library", version 5.3, from C to Java. * *

* The C version of fdlibm relied on the idiom of pointer aliasing a 64-bit * double floating-point value as a two-element array of 32-bit integers and * reading and writing the two halves of the double independently. This coding * pattern was problematic to C optimizers and not directly expressible in Java. * Therefore, rather than a memory level overlay, if portions of a double need * to be operated on as integer values, the standard library methods for bitwise * floating-point to integer conversion, Double.longBitsToDouble and * Double.doubleToRawLongBits, are directly or indirectly used. * *

* The C version of fdlibm also took some pains to signal the correct IEEE 754 * exceptional conditions divide by zero, invalid, overflow and underflow. For * example, overflow would be signaled by {@code huge * huge} where {@code huge} * was a large constant that would overflow when squared. Since IEEE * floating-point exceptional handling is not supported natively in the JVM, * such coding patterns have been omitted from this port. For example, rather * than {@code * return huge * huge}, this port will use {@code return INFINITY}. * *

* Various comparison and arithmetic operations in fdlibm could be done either * based on the integer view of a value or directly on the floating-point * representation. Which idiom is faster may depend on platform specific * factors. However, for code clarity if no other reason, this port will favor * expressing the semantics of those operations in terms of floating-point * operations when convenient to do so. */ final class FdLibm { /** * Returns the arccosine of x. Method : acos(x) = pi/2 - asin(x) acos(-x) = pi/2 * + asin(x) For |x| <= 0.5 acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) For * x > 0.5 acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) = 2asin(sqrt((1-x)/2)) * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) = 2f + (2c + 2s*z*R(z)) where f=hi * part of s, and c = (z-f*f)/(s+f) is the correction term for f so that f+c ~ * sqrt(z). For x <- 0.5 acos(x) = pi - 2asin(sqrt((1-|x|)/2)) = pi - * 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: if x is NaN, return x itself; if |x|>1, return NaN with * invalid signal. * * Function needed: sqrt */ static final class Acos { private static final double pio2_hi = 0x1.921fb54442d18p0, // 1.57079632679489655800e+00 pio2_lo = 0x1.1a62633145c07p-54, // 6.12323399573676603587e-17 pS0 = 0x1.5555555555555p-3, // 1.66666666666666657415e-01 pS1 = -0x1.4d61203eb6f7dp-2, // -3.25565818622400915405e-01 pS2 = 0x1.9c1550e884455p-3, // 2.01212532134862925881e-01 pS3 = -0x1.48228b5688f3bp-5, // -4.00555345006794114027e-02 pS4 = 0x1.9efe07501b288p-11, // 7.91534994289814532176e-04 pS5 = 0x1.23de10dfdf709p-15, // 3.47933107596021167570e-05 qS1 = -0x1.33a271c8a2d4bp1, // -2.40339491173441421878e+00 qS2 = 0x1.02ae59c598ac8p1, // 2.02094576023350569471e+00 qS3 = -0x1.6066c1b8d0159p-1, // -6.88283971605453293030e-01 qS4 = 0x1.3b8c5b12e9282p-4; // 7.70381505559019352791e-02 static double compute(double x) { double z, p, q, r, w, s, c, df; int hx, ix; hx = __HI(x); ix = hx & EXP_SIGNIF_BITS; if (ix >= 0x3ff0_0000) { // |x| >= 1 if (((ix - 0x3ff0_0000) | __LO(x)) == 0) { // |x| == 1 if (hx > 0) {// acos(1) = 0 return 0.0; } else { // acos(-1)= pi return Math.PI + 2.0 * pio2_lo; } } return (x - x) / (x - x); // acos(|x| > 1) is NaN } if (ix < 0x3fe0_0000) { // |x| < 0.5 if (ix <= 0x3c60_0000) { // if |x| < 2**-57 return pio2_hi + pio2_lo; } z = x * x; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; return pio2_hi - (x - (pio2_lo - x * r)); } else if (hx < 0) { // x < -0.5 z = (1.0 + x) * 0.5; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); s = Math.sqrt(z); r = p / q; w = r * s - pio2_lo; return Math.PI - 2.0 * (s + w); } else { // x > 0.5 z = (1.0 - x) * 0.5; s = Math.sqrt(z); df = s; df = __LO(df, 0); c = (z - df * df) / (s + df); p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); r = p / q; w = r * s + c; return 2.0 * (df + w); } } private Acos() { throw new UnsupportedOperationException(); } } /** * Returns the arcsine of x. * * Method : Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... we * approximate asin(x) on [0,0.5] by asin(x) = x + x*x^2*R(x^2) where R(x^2) is * a rational approximation of (asin(x)-x)/x^3 and its remez error is bounded by * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * * For x in [0.5,1] asin(x) = pi/2-2*asin(sqrt((1-x)/2)) Let y = (1-x), z = y/2, * s := sqrt(z), and pio2_hi+pio2_lo=pi/2; then for x>0.98 asin(x) = pi/2 - * 2*(s+s*z*R(z)) = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) For x<=0.98, let * pio4_hi = pio2_hi/2, then f = hi part of s; c = sqrt(z) - f = (z-f*f)/(s+f) * ...f+c=sqrt(z) and asin(x) = pi/2 - 2*(s+s*z*R(z)) = * pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) = * pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: if x is NaN, return x itself; if |x|>1, return NaN with * invalid signal. * */ static final class Asin { private static final double pio2_hi = 0x1.921fb54442d18p0, // 1.57079632679489655800e+00 pio2_lo = 0x1.1a62633145c07p-54, // 6.12323399573676603587e-17 pio4_hi = 0x1.921fb54442d18p-1, // 7.85398163397448278999e-01 // coefficient for R(x^2) pS0 = 0x1.5555555555555p-3, // 1.66666666666666657415e-01 pS1 = -0x1.4d61203eb6f7dp-2, // -3.25565818622400915405e-01 pS2 = 0x1.9c1550e884455p-3, // 2.01212532134862925881e-01 pS3 = -0x1.48228b5688f3bp-5, // -4.00555345006794114027e-02 pS4 = 0x1.9efe07501b288p-11, // 7.91534994289814532176e-04 pS5 = 0x1.23de10dfdf709p-15, // 3.47933107596021167570e-05 qS1 = -0x1.33a271c8a2d4bp1, // -2.40339491173441421878e+00 qS2 = 0x1.02ae59c598ac8p1, // 2.02094576023350569471e+00 qS3 = -0x1.6066c1b8d0159p-1, // -6.88283971605453293030e-01 qS4 = 0x1.3b8c5b12e9282p-4; // 7.70381505559019352791e-02 static double compute(double x) { double t = 0, w, p, q, c, r, s; int hx, ix; hx = __HI(x); ix = hx & EXP_SIGNIF_BITS; if (ix >= 0x3ff0_0000) { // |x| >= 1 if (((ix - 0x3ff0_0000) | __LO(x)) == 0) { // asin(1) = +-pi/2 with inexact return x * pio2_hi + x * pio2_lo; } return (x - x) / (x - x); // asin(|x| > 1) is NaN } else if (ix < 0x3fe0_0000) { // |x| < 0.5 if (ix < 0x3e40_0000) { // if |x| < 2**-27 if (HUGE + x > 1.0) {// return x with inexact if x != 0 return x; } } else { t = x * x; } p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = 1.0 + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); w = p / q; return x + x * w; } // 1 > |x| >= 0.5 w = 1.0 - Math.abs(x); t = w * 0.5; p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = 1.0 + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); s = Math.sqrt(t); if (ix >= 0x3FEF_3333) { // if |x| > 0.975 w = p / q; t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); } else { w = s; w = __LO(w, 0); c = (t - w * w) / (s + w); r = p / q; p = 2.0 * s * r - (pio2_lo - 2.0 * c); q = pio4_hi - 2.0 * w; t = pio4_hi - (p - q); } return (hx > 0) ? t : -t; } private Asin() { throw new UnsupportedOperationException(); } } /* * Returns the arctangent of x. Method 1. Reduce x to positive by atan(x) = * -atan(-x). 2. According to the integer k=4t+0.25 chopped, t=x, the argument * is further reduced to one of the following intervals and the arctangent of t * is evaluated by the corresponding formula: * * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) [7/16,11/16] * atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) [11/16.19/16] atan(x) = atan( 1 * ) + atan( (t-1)/(1+t) ) [19/16,39/16] atan(x) = atan(3/2) + atan( * (t-1.5)/(1+1.5t) ) [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) * * Constants: The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the compiler will * convert from decimal to binary accurately enough to produce the hexadecimal * values shown. */ static final class Atan { // @Stable private static final double atanhi[] = { 0x1.dac670561bb4fp-2, // atan(0.5)hi 4.63647609000806093515e-01 0x1.921fb54442d18p-1, // atan(1.0)hi 7.85398163397448278999e-01 0x1.f730bd281f69bp-1, // atan(1.5)hi 9.82793723247329054082e-01 0x1.921fb54442d18p0, // atan(inf)hi 1.57079632679489655800e+00 }; // @Stable private static final double atanlo[] = { 0x1.a2b7f222f65e2p-56, // atan(0.5)lo 2.26987774529616870924e-17 0x1.1a62633145c07p-55, // atan(1.0)lo 3.06161699786838301793e-17 0x1.007887af0cbbdp-56, // atan(1.5)lo 1.39033110312309984516e-17 0x1.1a62633145c07p-54, // atan(inf)lo 6.12323399573676603587e-17 }; // @Stable private static final double aT[] = { 0x1.555555555550dp-2, // 3.33333333333329318027e-01 -0x1.999999998ebc4p-3, // -1.99999999998764832476e-01 0x1.24924920083ffp-3, // 1.42857142725034663711e-01 -0x1.c71c6fe231671p-4, // -1.11111104054623557880e-01 0x1.745cdc54c206ep-4, // 9.09088713343650656196e-02 -0x1.3b0f2af749a6dp-4, // -7.69187620504482999495e-02 0x1.10d66a0d03d51p-4, // 6.66107313738753120669e-02 -0x1.dde2d52defd9ap-5, // -5.83357013379057348645e-02 0x1.97b4b24760debp-5, // 4.97687799461593236017e-02 -0x1.2b4442c6a6c2fp-5, // -3.65315727442169155270e-02 0x1.0ad3ae322da11p-6, // 1.62858201153657823623e-02 }; static double compute(double x) { double w, s1, s2, z; int ix, hx, id; hx = __HI(x); ix = hx & EXP_SIGNIF_BITS; if (ix >= 0x4410_0000) { // if |x| >= 2^66 if (ix > EXP_BITS || (ix == EXP_BITS && (__LO(x) != 0))) { return x + x; // NaN } if (hx > 0) { return atanhi[3] + atanlo[3]; } else { return -atanhi[3] - atanlo[3]; } } if (ix < 0x3fdc_0000) { // |x| < 0.4375 if (ix < 0x3e20_0000) { // |x| < 2^-29 if (HUGE + x > 1.0) { // raise inexact return x; } } id = -1; } else { x = Math.abs(x); if (ix < 0x3ff3_0000) { // |x| < 1.1875 if (ix < 0x3fe60000) { // 7/16 <= |x| < 11/16 id = 0; x = (2.0 * x - 1.0) / (2.0 + x); } else { // 11/16 <= |x| < 19/16 id = 1; x = (x - 1.0) / (x + 1.0); } } else { if (ix < 0x4003_8000) { // |x| < 2.4375 id = 2; x = (x - 1.5) / (1.0 + 1.5 * x); } else { // 2.4375 <= |x| < 2^66 id = 3; x = -1.0 / x; } } } // end of argument reduction z = x * x; w = z * z; // break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10]))))); s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9])))); if (id < 0) { return x - x * (s1 + s2); } else { z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x); return (hx < 0) ? -z : z; } } private Atan() { throw new UnsupportedOperationException(); } } /** * Returns the angle theta from the conversion of rectangular coordinates (x, y) * to polar coordinates (r, theta). * * Method : 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). 2. Reduce x to * positive by (if x and y are unexceptional): ARG (x+iy) = arctan(y/x) ... if x * > 0, ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, * * Special cases: * * ATAN2((anything), NaN ) is NaN; ATAN2(NAN , (anything) ) is NaN; ATAN2(+-0, * +(anything but NaN)) is +-0 ; ATAN2(+-0, -(anything but NaN)) is +-pi ; * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; ATAN2(+-(anything but INF and * NaN), +INF) is +-0 ; ATAN2(+-(anything but INF and NaN), -INF) is +-pi; * ATAN2(+-INF,+INF ) is +-pi/4 ; ATAN2(+-INF,-INF ) is +-3pi/4; ATAN2(+-INF, * (anything but,0,NaN, and INF)) is +-pi/2; * * Constants: The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the compiler will * convert from decimal to binary accurately enough to produce the hexadecimal * values shown. */ static final class Atan2 { private static final double tiny = 1.0e-300, pi_o_4 = 0x1.921fb54442d18p-1, // 7.8539816339744827900E-01 pi_o_2 = 0x1.921fb54442d18p0, // 1.5707963267948965580E+00 pi_lo = 0x1.1a62633145c07p-53; // 1.2246467991473531772E-16 static double compute(double y, double x) { double z; int k, m, hx, hy, ix, iy; /* unsigned */ int lx, ly; hx = __HI(x); ix = hx & EXP_SIGNIF_BITS; lx = __LO(x); hy = __HI(y); iy = hy & EXP_SIGNIF_BITS; ly = __LO(y); if (Double.isNaN(x) || Double.isNaN(y)) return x + y; if (((hx - 0x3ff0_0000) | lx) == 0) // x = 1.0 return StrictMath.atan(y); m = ((hy >> 31) & 1) | ((hx >> 30) & 2); // 2*sign(x) + sign(y) // when y = 0 if ((iy | ly) == 0) { switch (m) { case 0: case 1: return y; // atan(+/-0, +anything) = +/-0 case 2: return Math.PI + tiny; // atan(+0, -anything) = pi case 3: return -Math.PI - tiny; // atan(-0, -anything) = -pi } } // when x = 0 if ((ix | lx) == 0) { return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; } // when x is INF if (ix == EXP_BITS) { if (iy == EXP_BITS) { switch (m) { case 0: return pi_o_4 + tiny; // atan(+INF, +INF) case 1: return -pi_o_4 - tiny; // atan(-INF, +INF) case 2: return 3.0 * pi_o_4 + tiny; // atan(+INF, -INF) case 3: return -3.0 * pi_o_4 - tiny; // atan(-INF, -INF) } } else { switch (m) { case 0: return 0.0; // atan(+..., +INF) case 1: return -0.0; // atan(-..., +INF) case 2: return Math.PI + tiny; // atan(+..., -INF) case 3: return -Math.PI - tiny; // atan(-..., -INF) } } } // when y is INF if (iy == EXP_BITS) { return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; } // compute y/x k = (iy - ix) >> 20; if (k > 60) { // |y/x| > 2**60 z = pi_o_2 + 0.5 * pi_lo; } else if (hx < 0 && k < -60) { // |y|/x < -2**60 z = 0.0; } else { // safe to do y/x z = StrictMath.atan(Math.abs(y / x)); } switch (m) { case 0: return z; // atan(+, +) case 1: return -z; // atan(-, +) case 2: return Math.PI - (z - pi_lo); // atan(+, -) default: return (z - pi_lo) - Math.PI; // atan(-, -), case 3 } } private Atan2() { throw new UnsupportedOperationException(); } } /** * cbrt(x) Return cube root of x */ static final class Cbrt { // unsigned private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */ private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */ private static final double C = 0x1.15f15f15f15f1p-1; // 19/35 ~= 5.42857142857142815906e-01 private static final double D = -0x1.691de2532c834p-1; // -864/1225 ~= 7.05306122448979611050e-01 private static final double E = 0x1.6a0ea0ea0ea0fp0; // 99/70 ~= 1.41428571428571436819e+00 private static final double F = 0x1.9b6db6db6db6ep0; // 45/28 ~= 1.60714285714285720630e+00 private static final double G = 0x1.6db6db6db6db7p-2; // 5/14 ~= 3.57142857142857150787e-01 public static double compute(double x) { double t = 0.0; double sign; if (x == 0.0 || !Double.isFinite(x)) return x; // Handles signed zeros properly sign = (x < 0.0) ? -1.0 : 1.0; x = Math.abs(x); // x <- |x| // Rough cbrt to 5 bits if (x < 0x1.0p-1022) { // subnormal number t = 0x1.0p54; // set t= 2**54 t *= x; t = __HI(t, __HI(t) / 3 + B2); } else { int hx = __HI(x); // high word of x t = __HI(t, hx / 3 + B1); } // New cbrt to 23 bits, may be implemented in single precision double r, s, w; r = t * t / x; s = C + r * t; t *= G + F / (s + E + D / s); // Chopped to 20 bits and make it larger than cbrt(x) t = __LO(t, 0); t = __HI(t, __HI(t) + 0x00000001); // One step newton iteration to 53 bits with error less than 0.667 ulps s = t * t; // t*t is exact r = x / s; w = t + t; r = (r - t) / (w + r); // r-s is exact t = t + t * r; // Restore the original sign bit return sign * t; } private Cbrt() { throw new UnsupportedOperationException(); } } /** * cos(x) Return cosine function of x. * * kernel function: __kernel_sin ... sine function on [-pi/4,pi/4] __kernel_cos * ... cosine function on [-pi/4,pi/4] __ieee754_rem_pio2 ... argument reduction * routine * * Method. Let S,C and T denote the sin, cos and tan respectively on [-PI/4, * +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 in [-pi/4 , +pi/4], and let * n = k mod 4. We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- 0 S C T 1 C -S * -1/T 2 -S -C T 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: Let trig be any of sin, cos, or tan. trig(+-INF) is NaN, with * signals; trig(NaN) is that NaN; * * Accuracy: TRIG(x) returns trig(x) nearly rounded */ static final class Cos { /** * __kernel_cos( x, y ) kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 * Input x is assumed to be bounded by ~pi/4 in magnitude. Input y is the tail * of x. * * Algorithm 1. Since cos(-x) = cos(x), we need only to consider positive x. 2. * if x < 2^-27 (hx < 0x3e4000000), return 1 with inexact if x != 0. 3. cos(x) * is approximated by a polynomial of degree 14 on [0,pi/4] 4 14 cos(x) ~ 1 - * x*x/2 + C1*x + ... + C6*x where the remez error is * * | 2 4 6 8 10 12 14 | -58 |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x * )| <= 2 | | * * 4 6 8 10 12 14 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then cos(x) = * 1 - x*x/2 + r since cos(x+y) ~ cos(x) - sin(x)*y ~ cos(x) - x*y, a correction * term is necessary in cos(x) and hence cos(x+y) = 1 - (x*x/2 - (r - x*y)) For * better accuracy when x > 0.3, let qx = |x|/4 with the last 32 bits mask off, * and if x > 0.78125, let qx = 0.28125. Then cos(x+y) = (1-qx) - ((x*x/2-qx) - * (r-x*y)). Note that 1-qx and (x*x/2-qx) is EXACT here, and the magnitude of * the latter is at least a quarter of x*x/2, thus, reducing the rounding error * in the subtraction. */ private static final double C1 = 0x1.555555555554cp-5, // 4.16666666666666019037e-02 C2 = -0x1.6c16c16c15177p-10, // -1.38888888888741095749e-03 C3 = 0x1.a01a019cb159p-16, // 2.48015872894767294178e-05 C4 = -0x1.27e4f809c52adp-22, // -2.75573143513906633035e-07 C5 = 0x1.1ee9ebdb4b1c4p-29, // 2.08757232129817482790e-09 C6 = -0x1.8fae9be8838d4p-37; // -1.13596475577881948265e-11 static double __kernel_cos(double x, double y) { double a, hz, z, r, qx = 0.0; int ix; ix = __HI(x) & EXP_SIGNIF_BITS; // ix = |x|'s high word if (ix < 0x3e40_0000) { // if x < 2**27 if (((int) x) == 0) { // generate inexact return 1.0; } } z = x * x; r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6))))); if (ix < 0x3FD3_3333) { // if |x| < 0.3 return 1.0 - (0.5 * z - (z * r - x * y)); } else { if (ix > 0x3fe9_0000) { // x > 0.78125 qx = 0.28125; } else { qx = __HI_LO(ix - 0x0020_0000, 0); } hz = 0.5 * z - qx; a = 1.0 - qx; return a - (hz - (z * r - x * y)); } } static double compute(double x) { double[] y = new double[2]; double z = 0.0; int n, ix; // High word of x. ix = __HI(x); // |x| ~< pi/4 ix &= EXP_SIGNIF_BITS; if (ix <= 0x3fe9_21fb) { return __kernel_cos(x, z); } else if (ix >= EXP_BITS) { // cos(Inf or NaN) is NaN return x - x; } else { // argument reduction needed n = RemPio2.__ieee754_rem_pio2(x, y); switch (n & 3) { case 0: return Cos.__kernel_cos(y[0], y[1]); case 1: return -Sin.__kernel_sin(y[0], y[1], 1); case 2: return -Cos.__kernel_cos(y[0], y[1]); default: return Sin.__kernel_sin(y[0], y[1], 1); } } } private Cos() { throw new UnsupportedOperationException(); } } /** * Method : mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 1. * Replace x by |x| (cosh(x) = cosh(-x)). 2. [ exp(x) - 1 ]^2 0 <= x <= ln2/2 : * cosh(x) := 1 + ------------------- 2*exp(x) * * exp(x) + 1/exp(x) ln2/2 <= x <= 22 : cosh(x) := ------------------- 2 22 <= x * <= lnovft : cosh(x) := exp(x)/2 lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * * exp(x/2) ln2ovft < x : cosh(x) := huge*huge (overflow) * * Special cases: cosh(x) is |x| if x is +INF, -INF, or NaN. only cosh(0)=1 is * exact for finite x. */ static final class Cosh { private static final double huge = 1.0e300; static double compute(double x) { double t, w; int ix; /* unsigned */ int lx; // High word of |x| ix = __HI(x); ix &= EXP_SIGNIF_BITS; // x is INF or NaN if (ix >= EXP_BITS) { return x * x; } // |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) if (ix < 0x3fd6_2e43) { t = StrictMath.expm1(Math.abs(x)); w = 1.0 + t; if (ix < 0x3c80_0000) { // cosh(tiny) = 1 return w; } return 1.0 + (t * t) / (w + w); } // |x| in [0.5*ln2, 22], return (exp(|x|) + 1/exp(|x|)/2 if (ix < 0x4036_0000) { t = StrictMath.exp(Math.abs(x)); return 0.5 * t + 0.5 / t; } // |x| in [22, log(maxdouble)] return 0.5*exp(|x|) if (ix < 0x4086_2E42) { return 0.5 * StrictMath.exp(Math.abs(x)); } // |x| in [log(maxdouble), overflowthreshold] lx = __LO(x); if (ix < 0x4086_33CE || ((ix == 0x4086_33ce) && (Integer.compareUnsigned(lx, 0x8fb9_f87d) <= 0))) { w = StrictMath.exp(0.5 * Math.abs(x)); t = 0.5 * w; return t * w; } // |x| > overflowthreshold, cosh(x) overflow return huge * huge; } private Cosh() { throw new UnsupportedOperationException(); } } /** * Returns the exponential of x. * * Method 1. Argument reduction: Reduce x to an r so that |r| <= 0.5*ln2 ~ * 0.34658. Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better accuracy. * * 2. Approximation of exp(r) by a special rational function on the interval * [0,0.34658]: Write R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + * ... We use a special Reme algorithm on [0,0.34658] to generate a polynomial * of degree 5 to approximate R. The maximum error of this polynomial * approximation is bounded by 2**-59. In other words, R(z) ~ 2.0 + P1*z + * P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 (where z=r*r, and the values of P1 to * P5 are listed below) and | 5 | -59 | 2.0+P1*z+...+P5*z - R(z) | <= 2 | | The * computation of exp(r) thus becomes 2*r exp(r) = 1 + ------- R - r r*R1(r) = 1 * + r + ----------- (for better accuracy) 2 - R1(r) where 2 4 10 R1(r) = r - * (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): From step 1, we have exp(x) = 2^k * exp(r) * * Special cases: exp(INF) is INF, exp(NaN) is NaN; exp(-INF) is 0, and for * finite argument, only exp(0)=1 is exact. * * Accuracy: according to an error analysis, the error is always less than 1 ulp * (unit in the last place). * * Misc. info. For IEEE double if x > 7.09782712893383973096e+02 then exp(x) * overflow if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the compiler will * convert from decimal to binary accurately enough to produce the hexadecimal * values shown. */ static final class Exp { private static final double huge = 1.0e+300; private static final double twom1000 = 0x1.0p-1000; // 9.33263618503218878990e-302 = 2^-1000 private static final double o_threshold = 0x1.62e42fefa39efp9; // 7.09782712893383973096e+02 private static final double u_threshold = -0x1.74910d52d3051p9; // -7.45133219101941108420e+02; private static final double ln2HI = 0x1.62e42feep-1; // 6.93147180369123816490e-01 // @Stable private static final double[] ln2LO = { 0x1.a39ef35793c76p-33, // 1.90821492927058770002e-10 -0x1.a39ef35793c76p-33 }; // -1.90821492927058770002e-10 private static final double invln2 = 0x1.71547652b82fep0; // 1.44269504088896338700e+00 private static final double P1 = 0x1.555555555553ep-3; // 1.66666666666666019037e-01 private static final double P2 = -0x1.6c16c16bebd93p-9; // -2.77777777770155933842e-03 private static final double P3 = 0x1.1566aaf25de2cp-14; // 6.61375632143793436117e-05 private static final double P4 = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06 private static final double P5 = 0x1.6376972bea4d0p-25; // 4.13813679705723846039e-08 public static double compute(double x) { double y; double hi = 0.0; double lo = 0.0; double c; double t; int k = 0; int xsb; /* unsigned */ int hx; hx = __HI(x); /* high word of x */ xsb = (hx >> 31) & 1; /* sign bit of x */ hx &= EXP_SIGNIF_BITS; /* high word of |x| */ /* filter out non-finite argument */ if (hx >= 0x40862E42) { /* if |x| >= 709.78... */ if (hx >= 0x7ff00000) { if (((hx & 0xfffff) | __LO(x)) != 0) return x + x; /* NaN */ else return (xsb == 0) ? x : 0.0; /* exp(+-inf) = {inf, 0} */ } if (x > o_threshold) return huge * huge; /* overflow */ if (x < u_threshold) // unsigned compare needed here? return twom1000 * twom1000; /* underflow */ } /* argument reduction */ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x - ln2HI * (1 - 2 * xsb); /* +/- ln2HI */ lo = ln2LO[xsb]; k = 1 - xsb - xsb; } else { k = (int) (invln2 * x + 0.5 * (1 - 2 * xsb) /* +/- 0.5 */ ); t = k; hi = x - t * ln2HI; /* t*ln2HI is exact here */ lo = t * ln2LO[0]; } x = hi - lo; } else if (hx < 0x3e300000) { /* when |x|<2**-28 */ if (huge + x > 1.0) return 1.0 + x; /* trigger inexact */ } else { k = 0; } /* x is now in primary range */ t = x * x; c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); if (k == 0) return 1.0 - ((x * c) / (c - 2.0) - x); else y = 1.0 - ((lo - (x * c) / (2.0 - c)) - hi); if (k >= -1021) { y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */ return y; } else { y = __HI(y, __HI(y) + ((k + 1000) << 20)); /* add k to y's exponent */ return y * twom1000; } } private Exp() { throw new UnsupportedOperationException(); } } /* * expm1(x) Returns exp(x)-1, the exponential of x minus 1. * * Method 1. Argument reduction: Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 * * Here a correction term c will be computed to compensate the error in r when * rounded to a floating-point number. * * 2. Approximating expm1(r) by a special rational function on the interval * [0,0.34658]: Since r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... we * define R1(r*r) by r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) That is, * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) = 6/r * ( 1 + 2.0*(1/(exp(r)-1) * - 1/r)) = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... We use a special Reme * algorithm on [0,0.347] to generate a polynomial of degree 5 in r*r to * approximate R1. The maximum error of this polynomial approximation is bounded * by 2**-61. In other words, R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + * Q5*z**5 where Q1 = -1.6666666666666567384E-2, Q2 = 3.9682539681370365873E-4, * Q3 = -9.9206344733435987357E-6, Q4 = 2.5051361420808517002E-7, Q5 = * -6.2843505682382617102E-9; (where z=r*r, and the values of Q1 to Q5 are * listed below) with error bounded by | 5 | -61 | 1.0+Q1*z+...+Q5*z - R1(z) | * <= 2 | | * * expm1(r) = exp(r)-1 is then computed by the following specific way which * minimize the accumulation rounding error: 2 3 r r [ 3 - (R1 + R1*r/2) ] * expm1(r) = r + --- + --- * [--------------------] 2 2 [ 6 - r*(3 - R1*r/2) ] * * To compensate the error in the argument reduction, we use expm1(r+c) = * expm1(r) + c + expm1(r)*c ~ expm1(r) + c + r*c Thus c+r*c will be added in as * the correction terms for expm1(r+c). Now rearrange the term to avoid * optimization screw up: ( 2 2 ) ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) ({ ( 2 [ 6 - * r*(3 - R1*r/2) ] ) } 2 ) ( ) * * = r - E 3. Scale back to obtain expm1(x): From step 1, we have expm1(x) = * either 2^k*[expm1(r)+1] - 1 = or 2^k*[expm1(r) + (1-2^-k)] 4. Implementation * notes: (A). To save one multiplication, we scale the coefficient Qi to * Qi*2^i, and replace z by (x^2)/2. (B). To achieve maximum accuracy, we * compute expm1(x) by (i) if x < -56*ln2, return -1.0, (raise inexact if * x!=inf) (ii) if k=0, return r-E (iii) if k=-1, return 0.5*(r-E)-0.5 (iv) if * k=1 if r < -0.25, return 2*((r+0.5)- E) else return 1.0+2.0*(r-E); (v) if * (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) (vi) if k <= 20, return * 2^k((1-2^-k)-(E-r)), else (vii) return 2^k(1-((E+2^-k)-r)) * * Special cases: expm1(INF) is INF, expm1(NaN) is NaN; expm1(-INF) is -1, and * for finite argument, only expm1(0)=0 is exact. * * Accuracy: according to an error analysis, the error is always less than 1 ulp * (unit in the last place). * * Misc. info. For IEEE double if x > 7.09782712893383973096e+02 then expm1(x) * overflow * * Constants: The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the compiler will * convert from decimal to binary accurately enough to produce the hexadecimal * values shown. */ static final class Expm1 { private static final double huge = 1.0e+300; private static final double tiny = 1.0e-300; private static final double o_threshold = 0x1.62e42fefa39efp9; // 7.09782712893383973096e+02 private static final double ln2_hi = 0x1.62e42feep-1; // 6.93147180369123816490e-01 private static final double ln2_lo = 0x1.a39ef35793c76p-33; // 1.90821492927058770002e-10 private static final double invln2 = 0x1.71547652b82fep0; // 1.44269504088896338700e+00 // scaled coefficients related to expm1 private static final double Q1 = -0x1.11111111110f4p-5; // -3.33333333333331316428e-02 private static final double Q2 = 0x1.a01a019fe5585p-10; // 1.58730158725481460165e-03 private static final double Q3 = -0x1.4ce199eaadbb7p-14; // -7.93650757867487942473e-05 private static final double Q4 = 0x1.0cfca86e65239p-18; // 4.00821782732936239552e-06 private static final double Q5 = -0x1.afdb76e09c32dp-23; // -2.01099218183624371326e-07 static double compute(double x) { double y, hi, lo, c = 0, t, e, hxs, hfx, r1; int k, xsb; /* unsigned */ int hx; hx = __HI(x); // high word of x xsb = hx & SIGN_BIT; // sign bit of x hx &= EXP_SIGNIF_BITS; // high word of |x| // filter out huge and non-finite argument if (hx >= 0x4043_687A) { // if |x| >= 56*ln2 if (hx >= 0x4086_2E42) { // if |x| >= 709.78... if (hx >= 0x7ff_00000) { if (((hx & 0xf_ffff) | __LO(x)) != 0) { return x + x; // NaN } else { return (xsb == 0) ? x : -1.0; // exp(+-inf)={inf,-1} } } if (x > o_threshold) { return huge * huge; // overflow } } if (xsb != 0) { // x < -56*ln2, return -1.0 with inexact if (x + tiny < 0.0) { // raise inexact return tiny - 1.0; // return -1 } } } // argument reduction if (hx > 0x3fd6_2e42) { // if |x| > 0.5 ln2 if (hx < 0x3FF0_A2B2) { // and |x| < 1.5 ln2 if (xsb == 0) { hi = x - ln2_hi; lo = ln2_lo; k = 1; } else { hi = x + ln2_hi; lo = -ln2_lo; k = -1; } } else { k = (int) (invln2 * x + ((xsb == 0) ? 0.5 : -0.5)); t = k; hi = x - t * ln2_hi; // t*ln2_hi is exact here lo = t * ln2_lo; } x = hi - lo; c = (hi - x) - lo; } else if (hx < 0x3c90_0000) { // when |x| < 2**-54, return x t = huge + x; // return x with inexact flags when x != 0 return x - (t - (huge + x)); } else { k = 0; } // x is now in primary range hfx = 0.5 * x; hxs = x * hfx; r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); t = 3.0 - r1 * hfx; e = hxs * ((r1 - t) / (6.0 - x * t)); if (k == 0) { return x - (x * e - hxs); // c is 0 } else { e = (x * (e - c) - c); e -= hxs; if (k == -1) { return 0.5 * (x - e) - 0.5; } if (k == 1) { if (x < -0.25) { return -2.0 * (e - (x + 0.5)); } else { return 1.0 + 2.0 * (x - e); } } if (k <= -2 || k > 56) { // suffice to return exp(x) - 1 y = 1.0 - (e - x); y = __HI(y, __HI(y) + (k << 20)); // add k to y's exponent return y - 1.0; } t = 1.0; if (k < 20) { t = __HI(t, 0x3ff0_0000 - (0x2_00000 >> k)); // t = 1-2^-k y = t - (e - x); y = __HI(y, __HI(y) + (k << 20)); // add k to y's exponent } else { t = __HI(t, ((0x3ff - k) << 20)); // 2^-k y = x - (e + t); y += 1.0; y = __HI(y, __HI(y) + (k << 20)); // add k to y's exponent } } return y; } } /** * hypot(x,y) * * Method : If (assume round-to-nearest) z = x*x + y*y has error less than * sqrt(2)/2 ulp, than sqrt(z) has error less than 1 ulp (exercise). * * So, compute sqrt(x*x + y*y) with some care as follows to get the error below * 1 ulp: * * Assume x > y > 0; (if possible, set rounding to round-to-nearest) 1. if x > * 2y use x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y where x1 = x with lower 32 * bits cleared, x2 = x - x1; else 2. if x <= 2y use t1*y1 + ((x-y) * (x-y) + * (t1*y2 + t2*y)) where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1, y1= y * with lower 32 bits chopped, y2 = y - y1. * * NOTE: scaling may be necessary if some argument is too large or too tiny * * Special cases: hypot(x,y) is INF if x or y is +INF or -INF; else hypot(x,y) * is NAN if x or y is NAN. * * Accuracy: hypot(x,y) returns sqrt(x^2 + y^2) with error less than 1 ulp (unit * in the last place) */ static final class Hypot { public static final double TWO_MINUS_600 = 0x1.0p-600; public static final double TWO_PLUS_600 = 0x1.0p+600; public static double compute(double x, double y) { double a = Math.abs(x); double b = Math.abs(y); if (!Double.isFinite(a) || !Double.isFinite(b)) { if (a == INFINITY || b == INFINITY) return INFINITY; else return a + b; // Propagate NaN significand bits } if (b > a) { double tmp = a; a = b; b = tmp; } assert a >= b; // Doing bitwise conversion after screening for NaN allows // the code to not worry about the possibility of // "negative" NaN values. // Note: the ha and hb variables are the high-order // 32-bits of a and b stored as integer values. The ha and // hb values are used first for a rough magnitude // comparison of a and b and second for simulating higher // precision by allowing a and b, respectively, to be // decomposed into non-overlapping portions. Both of these // uses could be eliminated. The magnitude comparison // could be eliminated by extracting and comparing the // exponents of a and b or just be performing a // floating-point divide. Splitting a floating-point // number into non-overlapping portions can be // accomplished by judicious use of multiplies and // additions. For details see T. J. Dekker, A Floating-Point // Technique for Extending the Available Precision, // Numerische Mathematik, vol. 18, 1971, pp.224-242 and // subsequent work. int ha = __HI(a); // high word of a int hb = __HI(b); // high word of b if ((ha - hb) > 0x3c00000) { return a + b; // x / y > 2**60 } int k = 0; if (a > 0x1.00000_ffff_ffffp500) { // a > ~2**500 // scale a and b by 2**-600 ha -= 0x25800000; hb -= 0x25800000; a = a * TWO_MINUS_600; b = b * TWO_MINUS_600; k += 600; } double t1, t2; if (b < 0x1.0p-500) { // b < 2**-500 if (b < Double.MIN_NORMAL) { // subnormal b or 0 */ if (b == 0.0) return a; t1 = 0x1.0p1022; // t1 = 2^1022 b *= t1; a *= t1; k -= 1022; } else { // scale a and b by 2^600 ha += 0x25800000; // a *= 2^600 hb += 0x25800000; // b *= 2^600 a = a * TWO_PLUS_600; b = b * TWO_PLUS_600; k -= 600; } } // medium size a and b double w = a - b; if (w > b) { t1 = 0; t1 = __HI(t1, ha); t2 = a - t1; w = Math.sqrt(t1 * t1 - (b * (-b) - t2 * (a + t1))); } else { double y1, y2; a = a + a; y1 = 0; y1 = __HI(y1, hb); y2 = b - y1; t1 = 0; t1 = __HI(t1, ha + 0x00100000); t2 = a - t1; w = Math.sqrt(t1 * y1 - (w * (-w) - (t1 * y2 + t2 * b))); } if (k != 0) { // XXX Yassine return (1 << k) * w; } else return w; } private Hypot() { throw new UnsupportedOperationException(); } } static final class IEEEremainder { private static double __ieee754_fmod(double x, double y) { int n, hx, hy, hz, ix, iy, sx; /* unsigned */ int lx, ly, lz; hx = __HI(x); // high word of x lx = __LO(x); // low word of x hy = __HI(y); // high word of y ly = __LO(y); // low word of y sx = hx & SIGN_BIT; // sign of x hx ^= sx; // |x| hy &= EXP_SIGNIF_BITS; // |y| // purge off exception values if ((hy | ly) == 0 || (hx >= EXP_BITS) || // y = 0, or x not finite ((hy | ((ly | -ly) >>> 31)) > EXP_BITS)) // or y is NaN, unsigned shift return (x * y) / (x * y); if (hx <= hy) { if ((hx < hy) || (Integer.compareUnsigned(lx, ly) < 0)) { // |x| < |y| return x return x; } if (lx == ly) { return signedZero(sx); // |x| = |y| return x*0 } } ix = ilogb(hx, lx); iy = ilogb(hy, ly); // set up {hx, lx}, {hy, ly} and align y to x if (ix >= -1022) hx = 0x0010_0000 | (0x000f_ffff & hx); else { // subnormal x, shift x to normal n = -1022 - ix; if (n <= 31) { hx = (hx << n) | (lx >>> (32 - n)); // unsigned shift lx <<= n; } else { hx = lx << (n - 32); lx = 0; } } if (iy >= -1022) hy = 0x0010_0000 | (0x000f_ffff & hy); else { // subnormal y, shift y to normal n = -1022 - iy; if (n <= 31) { hy = (hy << n) | (ly >>> (32 - n)); // unsigned shift ly <<= n; } else { hy = ly << (n - 32); ly = 0; } } // fix point fmod n = ix - iy; while (n-- != 0) { hz = hx - hy; lz = lx - ly; if (Integer.compareUnsigned(lx, ly) < 0) { hz -= 1; } if (hz < 0) { hx = hx + hx + (lx >>> 31); // unsigned shift lx = lx + lx; } else { if ((hz | lz) == 0) { // return sign(x)*0 return signedZero(sx); } hx = hz + hz + (lz >>> 31); // unsigned shift lx = lz + lz; } } hz = hx - hy; lz = lx - ly; if (Integer.compareUnsigned(lx, ly) < 0) { hz -= 1; } if (hz >= 0) { hx = hz; lx = lz; } // convert back to floating value and restore the sign if ((hx | lx) == 0) { // return sign(x)*0 return signedZero(sx); } while (hx < 0x0010_0000) { // normalize x hx = hx + hx + (lx >>> 31); // unsigned shift lx = lx + lx; iy -= 1; } if (iy >= -1022) { // normalize output hx = ((hx - 0x0010_0000) | ((iy + 1023) << 20)); x = __HI_LO(hx | sx, lx); } else { // subnormal output n = -1022 - iy; if (n <= 20) { lx = (lx >>> n) | (/* (unsigned) */hx << (32 - n)); // unsigned shift hx >>= n; } else if (n <= 31) { lx = (hx << (32 - n)) | (lx >>> n); // unsigned shift hx = sx; } else { lx = hx >> (n - 32); hx = sx; } x = __HI_LO(hx | sx, lx); x *= 1.0; // create necessary signal } return x; // exact output } static double compute(double x, double p) { int hx, hp; /* unsigned */ int sx, lx, lp; double p_half; hx = __HI(x); // high word of x lx = __LO(x); // low word of x hp = __HI(p); // high word of p lp = __LO(p); // low word of p sx = hx & SIGN_BIT; hp &= EXP_SIGNIF_BITS; hx &= EXP_SIGNIF_BITS; // purge off exception values if ((hp | lp) == 0) {// p = 0 return (x * p) / (x * p); } if ((hx >= EXP_BITS) || // not finite ((hp >= EXP_BITS) && // p is NaN (((hp - EXP_BITS) | lp) != 0))) return (x * p) / (x * p); if (hp <= 0x7fdf_ffff) { // now x < 2p x = __ieee754_fmod(x, p + p); } if (((hx - hp) | (lx - lp)) == 0) { return 0.0 * x; } x = Math.abs(x); p = Math.abs(p); if (hp < 0x0020_0000) { if (x + x > p) { x -= p; if (x + x >= p) { x -= p; } } } else { p_half = 0.5 * p; if (x > p_half) { x -= p; if (x >= p_half) { x -= p; } } } return __HI(x, __HI(x) ^ sx); } private static int ilogb(int hz, int lz) { int iz, i; if (hz < 0x0010_0000) { // subnormal z if (hz == 0) { for (iz = -1043, i = lz; i > 0; i <<= 1) { iz -= 1; } } else { for (iz = -1022, i = (hz << 11); i > 0; i <<= 1) { iz -= 1; } } } else { iz = (hz >> 20) - 1023; } return iz; } /* * Return a double zero with the same sign as the int argument. */ private static double signedZero(int sign) { return +0.0 * (sign); } private IEEEremainder() { throw new UnsupportedOperationException(); } } /** * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) double x[],y[]; int e0,nx,prec; int * ipio2[]; * * __kernel_rem_pio2 return the last three digits of N with y = x - N*pi/2 so * that |y| < pi/2. * * The method is to compute the integer (mod 8) and fraction parts of (2/pi)*x * without doing the full multiplication. In general we skip the part of the * product that are known to be a huge integer ( more accurately, = 0 mod 8 ). * Thus the number of operations are independent of the exponent of the input. * * (2/pi) is represented by an array of 24-bit integers in ipio2[]. * * Input parameters: x[] The input value (must be positive) is broken into nx * pieces of 24-bit integers in double precision format. x[i] will be the i-th * 24 bit of x. The scaled exponent of x[0] is given in input parameter e0 * (i.e., x[0]*2^e0 match x's up to 24 bits. * * Example of breaking a double positive z into x[0]+x[1]+x[2]: e0 = ilogb(z)-23 * z = scalbn(z,-e0) for i = 0,1,2 x[i] = floor(z) z = (z-x[i])*2**24 * * * y[] output result in an array of double precision numbers. The dimension of * y[] is: 24-bit precision 1 53-bit precision 2 64-bit precision 2 113-bit * precision 3 The actual value is the sum of them. Thus for 113-bit precision, * one may have to do something like: * * long double t,w,r_head, r_tail; t = (long double)y[2] + (long double)y[1]; w * = (long double)y[0]; r_head = t+w; r_tail = w - (r_head - t); * * e0 The exponent of x[0] * * nx dimension of x[] * * prec an integer indicating the precision: 0 24 bits (single) 1 53 bits * (double) 2 64 bits (extended) 3 113 bits (quad) * * ipio2[] integer array, contains the (24*i)-th to (24*i+23)-th bit of 2/pi * after binary point. The corresponding floating value is * * ipio2[i] * 2^(-24(i+1)). * * External function: double scalbn(), floor(); * * * Here is the description of some local variables: * * jk jk+1 is the initial number of terms of ipio2[] needed in the computation. * The recommended value is 2,3,4, 6 for single, double, extended,and quad. * * jz local integer variable indicating the number of terms of ipio2[] used. * * jx nx - 1 * * jv index for pointing to the suitable ipio2[] for the computation. In * general, we want ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 is an integer. Thus * e0-3-24*jv >= 0 or (e0-3)/24 >= jv Hence jv = max(0,(e0-3)/24). * * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. * * q[] double array with integral value, representing the 24-bits chunk of the * product of x and 2/pi. * * q0 the corresponding exponent of q[0]. Note that the exponent for q[i] would * be q0-24*i. * * PIo2[] double precision array, obtained by cutting pi/2 into 24 bits chunks. * * f[] ipio2[] in floating point * * iq[] integer array by breaking up q[] in 24-bits chunk. * * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] * * ih integer. If >0 it indicates q[] is >= 0.5, hence it also indicates the * *sign* of the result. * */ static final class KernelRemPio2 { /* * Constants: The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the compiler will * convert from decimal to binary accurately enough to produce the hexadecimal * values shown. */ // @Stable private static final int init_jk[] = { 2, 3, 4, 6 }; // initial value for jk // @Stable private static final double PIo2[] = { 0x1.921fb4p0, // 1.57079625129699707031e+00 0x1.4442dp-24, // 7.54978941586159635335e-08 0x1.846988p-48, // 5.39030252995776476554e-15 0x1.8cc516p-72, // 3.28200341580791294123e-22 0x1.01b838p-96, // 1.27065575308067607349e-29 0x1.a25204p-120, // 1.22933308981111328932e-36 0x1.382228p-145, // 2.73370053816464559624e-44 0x1.9f31dp-169, // 2.16741683877804819444e-51 }; static final double twon24 = 0x1.0p-24; // 5.96046447753906250000e-08 static int __kernel_rem_pio2(double[] x, double[] y, int e0, int nx, int prec, final int[] ipio2) { int jz, jx, jv, jp, jk, carry, n, i, j, k, m, q0, ih; int[] iq = new int[20]; double z, fw; double[] f = new double[20]; double[] fq = new double[20]; double[] q = new double[20]; // initialize jk jk = init_jk[prec]; jp = jk; // determine jx, jv, q0, note that 3 > q0 jx = nx - 1; jv = (e0 - 3) / 24; if (jv < 0) { jv = 0; } q0 = e0 - 24 * (jv + 1); // set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] j = jv - jx; m = jx + jk; for (i = 0; i <= m; i++, j++) { f[i] = (j < 0) ? 0.0 : (double) ipio2[j]; } // compute q[0],q[1],...q[jk] for (i = 0; i <= jk; i++) { for (j = 0, fw = 0.0; j <= jx; j++) { fw += x[j] * f[jx + i - j]; } q[i] = fw; } jz = jk; while (true) { // distill q[] into iq[] reversingly for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { fw = ((int) (twon24 * z)); iq[i] = (int) (z - TWO24 * fw); z = q[j - 1] + fw; } // compute n z = Math.scalb(z, q0); // actual value of z z -= 8.0 * Math.floor(z * 0.125); // trim off integer >= 8 n = (int) z; z -= n; ih = 0; if (q0 > 0) { // need iq[jz - 1] to determine n i = (iq[jz - 1] >> (24 - q0)); n += i; iq[jz - 1] -= i << (24 - q0); ih = iq[jz - 1] >> (23 - q0); } else if (q0 == 0) { ih = iq[jz - 1] >> 23; } else if (z >= 0.5) { ih = 2; } if (ih > 0) { // q > 0.5 n += 1; carry = 0; for (i = 0; i < jz; i++) { // compute 1-q j = iq[i]; if (carry == 0) { if (j != 0) { carry = 1; iq[i] = 0x100_0000 - j; } } else { iq[i] = 0xff_ffff - j; } } if (q0 > 0) { // rare case: chance is 1 in 12 switch (q0) { case 1: iq[jz - 1] &= 0x7f_ffff; break; case 2: iq[jz - 1] &= 0x3f_ffff; break; } } if (ih == 2) { z = 1.0 - z; if (carry != 0) { z -= Math.scalb(1.0, q0); } } } // check if recomputation is needed if (z == 0.0) { j = 0; for (i = jz - 1; i >= jk; i--) { j |= iq[i]; } if (j == 0) { // need recomputation for (k = 1; iq[jk - k] == 0; k++) ; // k = no. of terms needed for (i = jz + 1; i <= jz + k; i++) { // add q[jz+1] to q[jz+k] f[jx + i] = ipio2[jv + i]; for (j = 0, fw = 0.0; j <= jx; j++) { fw += x[j] * f[jx + i - j]; } q[i] = fw; } jz += k; continue; } else { break; } } else { break; } } // chop off zero terms if (z == 0.0) { jz -= 1; q0 -= 24; while (iq[jz] == 0) { jz--; q0 -= 24; } } else { // break z into 24-bit if necessary z = Math.scalb(z, -q0); if (z >= TWO24) { fw = ((int) (twon24 * z)); iq[jz] = (int) (z - TWO24 * fw); jz += 1; q0 += 24; iq[jz] = (int) fw; } else { iq[jz] = (int) z; } } // convert integer "bit" chunk to floating-point value fw = Math.scalb(1.0, q0); for (i = jz; i >= 0; i--) { q[i] = fw * iq[i]; fw *= twon24; } // compute PIo2[0,...,jp]*q[jz,...,0] for (i = jz; i >= 0; i--) { for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) { fw += PIo2[k] * q[i + k]; } fq[jz - i] = fw; } // compress fq[] into y[] switch (prec) { case 0: fw = 0.0; for (i = jz; i >= 0; i--) { fw += fq[i]; } y[0] = (ih == 0) ? fw : -fw; break; case 1: case 2: fw = 0.0; for (i = jz; i >= 0; i--) { fw += fq[i]; } y[0] = (ih == 0) ? fw : -fw; fw = fq[0] - fw; for (i = 1; i <= jz; i++) { fw += fq[i]; } y[1] = (ih == 0) ? fw : -fw; break; case 3: // painful for (i = jz; i > 0; i--) { fw = fq[i - 1] + fq[i]; fq[i] += fq[i - 1] - fw; fq[i - 1] = fw; } for (i = jz; i > 1; i--) { fw = fq[i - 1] + fq[i]; fq[i] += fq[i - 1] - fw; fq[i - 1] = fw; } for (fw = 0.0, i = jz; i >= 2; i--) { fw += fq[i]; } if (ih == 0) { y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; } else { y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; } } return n & 7; } } /** * Return the (natural) logarithm of x * * Method : 1. Argument Reduction: find k and f such that x = 2^k * (1+f), where * sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). Let s = f/(2+f) ; based on log(1+f) = log(1+s) * - log(1-s) = 2s + 2/3 s**3 + 2/5 s**5 + ....., = 2s + s*R We use a special * Reme algorithm on [0,0.1716] to generate a polynomial of degree 14 to * approximate R The maximum error of this polynomial approximation is bounded * by 2**-58.45. In other words, 2 4 6 8 10 12 14 R(z) ~ Lg1*s +Lg2*s +Lg3*s * +Lg4*s +Lg5*s +Lg6*s +Lg7*s (the values of Lg1 to Lg7 are listed in the * program) and | 2 14 | -58.45 | Lg1*s +...+Lg7*s - R(z) | <= 2 | | Note that * 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. In order to guarantee * error in log below 1ulp, we compute log by log(1+f) = f - s*(f - R) (if f is * not too large) log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). = * k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) Here ln2 is split into two floating * point number: ln2_hi + ln2_lo, where n*ln2_hi is always exact for |n| < 2000. * * Special cases: log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; log(NaN) is that NaN with no * signal. * * Accuracy: according to an error analysis, the error is always less than 1 ulp * (unit in the last place). * * Constants: The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the compiler will * convert from decimal to binary accurately enough to produce the hexadecimal * values shown. */ static final class Log { private static final double ln2_hi = 0x1.62e42feep-1, // 6.93147180369123816490e-01 ln2_lo = 0x1.a39ef35793c76p-33, // 1.90821492927058770002e-10 Lg1 = 0x1.5555555555593p-1, // 6.666666666666735130e-01 Lg2 = 0x1.999999997fa04p-2, // 3.999999999940941908e-01 Lg3 = 0x1.2492494229359p-2, // 2.857142874366239149e-01 Lg4 = 0x1.c71c51d8e78afp-3, // 2.222219843214978396e-01 Lg5 = 0x1.7466496cb03dep-3, // 1.818357216161805012e-01 Lg6 = 0x1.39a09d078c69fp-3, // 1.531383769920937332e-01 Lg7 = 0x1.2f112df3e5244p-3; // 1.479819860511658591e-01 static double compute(double x) { double hfsq, f, s, z, R, w, t1, t2, dk; int k, hx, i, j; /* unsigned */ int lx; hx = __HI(x); // high word of x lx = __LO(x); // low word of x k = 0; if (hx < 0x0010_0000) { // x < 2**-1022 if (((hx & EXP_SIGNIF_BITS) | lx) == 0) { // log(+-0) = -inf return -TWO54 / 0.0; } if (hx < 0) { // log(-#) = NaN return (x - x) / 0.0; } k -= 54; x *= TWO54; // subnormal number, scale up x hx = __HI(x); // high word of x } if (hx >= EXP_BITS) { return x + x; } k += (hx >> 20) - 1023; hx &= 0x000f_ffff; i = (hx + 0x9_5f64) & 0x10_0000; x = __HI(x, hx | (i ^ 0x3ff0_0000)); // normalize x or x/2 k += (i >> 20); f = x - 1.0; if ((0x000f_ffff & (2 + hx)) < 3) {// |f| < 2**-20 if (f == 0.0) { if (k == 0) { return 0.0; } else { dk = k; return dk * ln2_hi + dk * ln2_lo; } } R = f * f * (0.5 - 0.33333333333333333 * f); if (k == 0) { return f - R; } else { dk = k; return dk * ln2_hi - ((R - dk * ln2_lo) - f); } } s = f / (2.0 + f); dk = k; z = s * s; i = hx - 0x6_147a; w = z * z; j = 0x6b851 - hx; t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); i |= j; R = t2 + t1; if (i > 0) { hfsq = 0.5 * f * f; if (k == 0) { return f - (hfsq - s * (hfsq + R)); } else { return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f); } } else { if (k == 0) { return f - s * (f - R); } else { return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f); } } } private Log() { throw new UnsupportedOperationException(); } } /** * Return the base 10 logarithm of x * * Method : Let log10_2hi = leading 40 bits of log10(2) and log10_2lo = log10(2) * - log10_2hi, ivln10 = 1/log(10) rounded. Then n = ilogb(x), if(n<0) n = n+1; * x = scalbn(x,-n); log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) * * Note 1: To guarantee log10(10**n)=n, where 10**n is normal, the rounding mode * must set to Round-to-Nearest. Note 2: [1/log(10)] rounded to 53 bits has * error .198 ulps; log10 is monotonic at all binary break points. * * Special cases: log10(x) is NaN with signal if x < 0; log10(+INF) is +INF with * no signal; log10(0) is -INF with signal; log10(NaN) is that NaN with no * signal; log10(10**N) = N for N=0,1,...,22. * * Constants: The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the compiler will * convert from decimal to binary accurately enough to produce the hexadecimal * values shown. */ static final class Log10 { private static final double ivln10 = 0x1.bcb7b1526e50ep-2; // 4.34294481903251816668e-01 private static final double log10_2hi = 0x1.34413509f6p-2; // 3.01029995663611771306e-01; private static final double log10_2lo = 0x1.9fef311f12b36p-42; // 3.69423907715893078616e-13; public static double compute(double x) { double y, z; int i, k; int hx = __HI(x); // high word of x int lx = __LO(x); // low word of x k = 0; if (hx < 0x0010_0000) { /* x < 2**-1022 */ if (((hx & EXP_SIGNIF_BITS) | lx) == 0) { return -TWO54 / 0.0; /* log(+-0)=-inf */ } if (hx < 0) { return (x - x) / 0.0; /* log(-#) = NaN */ } k -= 54; x *= TWO54; /* subnormal number, scale up x */ hx = __HI(x); } if (hx >= EXP_BITS) { return x + x; } k += (hx >> 20) - 1023; i = (k & SIGN_BIT) >>> 31; // unsigned shift hx = (hx & 0x000f_ffff) | ((0x3ff - i) << 20); y = k + i; x = __HI(x, hx); // replace high word of x with hx z = y * log10_2lo + ivln10 * StrictMath.log(x); return z + y * log10_2hi; } private Log10() { throw new UnsupportedOperationException(); } } /** * Returns the natural logarithm of the sum of the argument and 1. * * Method : 1. Argument Reduction: find k and f such that 1+x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * Note. If k=0, then f=x is exact. However, if k!=0, then f may not be * representable exactly. In that case, a correction term is need. Let u=1+x * rounded. Let c = (1+x)-u, then log(1+x) - log(u) ~ c/u. Thus, we proceed to * compute log(u), and add back the correction term c/u. (Note: when x > 2**53, * one can simply return log(x)) * * 2. Approximation of log1p(f). Let s = f/(2+f) ; based on log(1+f) = log(1+s) * - log(1-s) = 2s + 2/3 s**3 + 2/5 s**5 + ....., = 2s + s*R We use a special * Reme algorithm on [0,0.1716] to generate a polynomial of degree 14 to * approximate R The maximum error of this polynomial approximation is bounded * by 2**-58.45. In other words, 2 4 6 8 10 12 14 R(z) ~ Lp1*s +Lp2*s +Lp3*s * +Lp4*s +Lp5*s +Lp6*s +Lp7*s (the values of Lp1 to Lp7 are listed in the * program) and | 2 14 | -58.45 | Lp1*s +...+Lp7*s - R(z) | <= 2 | | Note that * 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. In order to guarantee * error in log below 1ulp, we compute log by log1p(f) = f - (hfsq - * s*(hfsq+R)). * * 3. Finally, log1p(x) = k*ln2 + log1p(f). = * k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) Here ln2 is split into two floating * point number: ln2_hi + ln2_lo, where n*ln2_hi is always exact for |n| < 2000. * * Special cases: log1p(x) is NaN with signal if x < -1 (including -INF) ; * log1p(+INF) is +INF; log1p(-1) is -INF with signal; log1p(NaN) is that NaN * with no signal. * * Accuracy: according to an error analysis, the error is always less than 1 ulp * (unit in the last place). * * Constants: The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the compiler will * convert from decimal to binary accurately enough to produce the hexadecimal * values shown. * * Note: Assuming log() return accurate answer, the following algorithm can be * used to compute log1p(x) to within a few ULP: * * u = 1+x; if(u==1.0) return x ; else return log(u)*(x/(u-1.0)); * * See HP-15C Advanced Functions Handbook, p.193. */ static final class Log1p { private static final double ln2_hi = 0x1.62e42feep-1; // 6.93147180369123816490e-01 private static final double ln2_lo = 0x1.a39ef35793c76p-33; // 1.90821492927058770002e-10 private static final double Lp1 = 0x1.5555555555593p-1; // 6.666666666666735130e-01 private static final double Lp2 = 0x1.999999997fa04p-2; // 3.999999999940941908e-01 private static final double Lp3 = 0x1.2492494229359p-2; // 2.857142874366239149e-01 private static final double Lp4 = 0x1.c71c51d8e78afp-3; // 2.222219843214978396e-01 private static final double Lp5 = 0x1.7466496cb03dep-3; // 1.818357216161805012e-01 private static final double Lp6 = 0x1.39a09d078c69fp-3; // 1.531383769920937332e-01 private static final double Lp7 = 0x1.2f112df3e5244p-3; // 1.479819860511658591e-01 public static double compute(double x) { double hfsq, f = 0, c = 0, s, z, R, u; int k, hx, hu = 0, ax; hx = __HI(x); /* high word of x */ ax = hx & EXP_SIGNIF_BITS; k = 1; if (hx < 0x3FDA_827A) { /* x < 0.41422 */ if (ax >= 0x3ff0_0000) { /* x <= -1.0 */ if (x == -1.0) /* log1p(-1)=-inf */ return -INFINITY; else return Double.NaN; /* log1p(x < -1) = NaN */ } if (ax < 0x3e20_0000) { /* |x| < 2**-29 */ if (TWO54 + x > 0.0 /* raise inexact */ && ax < 0x3c90_0000) /* |x| < 2**-54 */ return x; else return x - x * x * 0.5; } if (hx > 0 || hx <= 0xbfd2_bec3) { /* -0.2929 < x < 0.41422 */ k = 0; f = x; hu = 1; } } if (hx >= EXP_BITS) { return x + x; } if (k != 0) { if (hx < 0x4340_0000) { u = 1.0 + x; hu = __HI(u); /* high word of u */ k = (hu >> 20) - 1023; c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */ c /= u; } else { u = x; hu = __HI(u); /* high word of u */ k = (hu >> 20) - 1023; c = 0; } hu &= 0x000f_ffff; if (hu < 0x6_a09e) { u = __HI(u, hu | 0x3ff0_0000); /* normalize u */ } else { k += 1; u = __HI(u, hu | 0x3fe0_0000); /* normalize u/2 */ hu = (0x0010_0000 - hu) >> 2; } f = u - 1.0; } hfsq = 0.5 * f * f; if (hu == 0) { /* |f| < 2**-20 */ if (f == 0.0) { if (k == 0) { return 0.0; } else { c += k * ln2_lo; return k * ln2_hi + c; } } R = hfsq * (1.0 - 0.66666666666666666 * f); if (k == 0) { return f - R; } else { return k * ln2_hi - ((R - (k * ln2_lo + c)) - f); } } s = f / (2.0 + f); z = s * s; R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7)))))); if (k == 0) { return f - (hfsq - s * (hfsq + R)); } else { return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); } } } /** * Compute x**y n Method: Let x = 2 * (1+f) 1. Compute and return log2(x) in two * pieces: log2(x) = w1 + w2, where w1 has 53 - 24 = 29 bit trailing zeros. 2. * Perform y*log2(x) = n+y' by simulating multi-precision arithmetic, where |y'| * <= 0.5. 3. Return x**y = 2**n*exp(y'*log2) * * Special cases: 1. (anything) ** 0 is 1 2. (anything) ** 1 is itself 3. * (anything) ** NAN is NAN 4. NAN ** (anything except 0) is NAN 5. +-(|x| > 1) * ** +INF is +INF 6. +-(|x| > 1) ** -INF is +0 7. +-(|x| < 1) ** +INF is +0 8. * +-(|x| < 1) ** -INF is +INF 9. +-1 ** +-INF is NAN 10. +0 ** (+anything * except 0, NAN) is +0 11. -0 ** (+anything except 0, NAN, odd integer) is +0 * 12. +0 ** (-anything except 0, NAN) is +INF 13. -0 ** (-anything except 0, * NAN, odd integer) is +INF 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) * 15. +INF ** (+anything except 0,NAN) is +INF 16. +INF ** (-anything except * 0,NAN) is +0 17. -INF ** (anything) = -0 ** (-anything) 18. (-anything) ** * (integer) is (-1)**(integer)*(+anything**integer) 19. (-anything except 0 and * inf) ** (non-integer) is NAN * * Accuracy: pow(x,y) returns x**y nearly rounded. In particular * pow(integer,integer) always returns the correct integer provided it is * representable. */ static final class Pow { public static double compute(final double x, final double y) { double z; double r, s, t, u, v, w; int i, j, k, n; // y == zero: x**0 = 1 if (y == 0.0) return 1.0; // +/-NaN return x + y to propagate NaN significands if (Double.isNaN(x) || Double.isNaN(y)) return x + y; final double y_abs = Math.abs(y); double x_abs = Math.abs(x); // Special values of y if (y == 2.0) { return x * x; } else if (y == 0.5) { if (x >= -Double.MAX_VALUE) // Handle x == -infinity later return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0 } else if (y_abs == 1.0) { // y is +/-1 return (y == 1.0) ? x : 1.0 / x; } else if (y_abs == INFINITY) { // y is +/-infinity if (x_abs == 1.0) return y - y; // inf**+/-1 is NaN else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0 return (y >= 0) ? y : 0.0; else // (|x| < 1)**-/+inf = inf, 0 return (y < 0) ? -y : 0.0; } final int hx = __HI(x); int ix = hx & EXP_SIGNIF_BITS; /* * When x < 0, determine if y is an odd integer: y_is_int = 0 ... y is not an * integer y_is_int = 1 ... y is an odd int y_is_int = 2 ... y is an even int */ int y_is_int = 0; if (hx < 0) { if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15 y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0 else if (y_abs >= 1.0) { // |y| >= 1.0 long y_abs_as_long = (long) y_abs; if ((y_abs_as_long) == y_abs) { y_is_int = 2 - (int) (y_abs_as_long & 0x1L); } } } // Special value of x if (x_abs == 0.0 || x_abs == INFINITY || x_abs == 1.0) { z = x_abs; // x is +/-0, +/-inf, +/-1 if (y < 0.0) z = 1.0 / z; // z = (1/|x|) if (hx < 0) { if (((ix - 0x3ff00000) | y_is_int) == 0) { z = (z - z) / (z - z); // (-1)**non-int is NaN } else if (y_is_int == 1) z = -1.0 * z; // (x < 0)**odd = -(|x|**odd) } return z; } n = (hx >> 31) + 1; // (x < 0)**(non-int) is NaN if ((n | y_is_int) == 0) return (x - x) / (x - x); s = 1.0; // s (sign of result -ve**odd) = -1 else = 1 if ((n | (y_is_int - 1)) == 0) s = -1.0; // (-ve)**(odd int) double p_h, p_l, t1, t2; // |y| is huge if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31 final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2 final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2 final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail // Over/underflow if x is not close to one if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418 return (y < 0.0) ? s * INFINITY : s * 0.0; if (x_abs > 0x1.00000_ffff_ffffp0) // |x| > ~1.0 return (y > 0.0) ? s * INFINITY : s * 0.0; /* * now |1-x| is tiny <= 2**-20, sufficient to compute log(x) by x - x^2/2 + * x^3/3 - x^4/4 */ t = x_abs - 1.0; // t has 20 trailing zeros w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits v = t * INV_LN2_L - w * INV_LN2; t1 = u + v; t1 = __LO(t1, 0); t2 = v - (t1 - u); } else { final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2) final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l; n = 0; // Take care of subnormal numbers if (ix < 0x00100000) { x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0 n -= 53; ix = __HI(x_abs); } n += ((ix) >> 20) - 0x3ff; j = ix & 0x000fffff; // Determine interval ix = j | 0x3ff00000; // Normalize ix if (j <= 0x3988E) k = 0; // |x| > 1) | 0x20000000) + 0x00080000 + (k << 18)); t_l = x_abs - (t_h - BP_k); s_l = v * ((u - s_h * t_h) - s_h * t_l); // Compute log(x_abs) s2 = ss * ss; r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + ss); s2 = s_h * s_h; t_h = 3.0 + s2 + r; t_h = __LO(t_h, 0); t_l = r - ((t_h - 3.0) - s2); // u+v = ss*(1+...) u = s_h * t_h; v = s_l * t_h + t_l * ss; // 2/(3log2)*(ss + ...) p_h = u + v; p_h = __LO(p_h, 0); p_l = v - (p_h - u); z_h = CP_H * p_h; // CP_H + CP_L = 2/(3*log2) z_l = CP_L * p_h + p_l * CP + DP_L * k; // log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l t = n; t1 = (((z_h + z_l) + DP_H * k) + t); t1 = __LO(t1, 0); t2 = z_l - (((t1 - t) - DP_H * k) - z_h); } // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2) double y1 = y; y1 = __LO(y1, 0); p_l = (y - y1) * t1 + y * t2; p_h = y1 * t1; z = p_l + p_h; j = __HI(z); i = __LO(z); if (j >= 0x40900000) { // z >= 1024 if (((j - 0x40900000) | i) != 0) // if z > 1024 return s * INFINITY; // Overflow else { final double OVT = 8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp)) if (p_l + OVT > z - p_h) return s * INFINITY; // Overflow } } else if ((j & EXP_SIGNIF_BITS) >= 0x4090cc00) { // z <= -1075 if (((j - 0xc090cc00) | i) != 0) // z < -1075 return s * 0.0; // Underflow else { if (p_l <= z - p_h) return s * 0.0; // Underflow } } /* * Compute 2**(p_h+p_l) */ // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3 final double P1 = 0x1.5555_5555_5553ep-3; // 1.66666666666666019037e-01 final double P2 = -0x1.6c16_c16b_ebd93p-9; // -2.77777777770155933842e-03 final double P3 = 0x1.1566_aaf2_5de2cp-14; // 6.61375632143793436117e-05 final double P4 = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06 final double P5 = 0x1.6376_972b_ea4d0p-25; // 4.13813679705723846039e-08 final double LG2 = 0x1.62e4_2fef_a39efp-1; // 6.93147180559945286227e-01 final double LG2_H = 0x1.62e43p-1; // 6.93147182464599609375e-01 final double LG2_L = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09 i = j & EXP_SIGNIF_BITS; k = (i >> 20) - 0x3ff; n = 0; if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z + 0.5] n = j + (0x00100000 >> (k + 1)); k = ((n & EXP_SIGNIF_BITS) >> 20) - 0x3ff; // new k for n t = 0.0; t = __HI(t, (n & ~(0x000fffff >> k))); n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); if (j < 0) n = -n; p_h -= t; } t = p_l + p_h; t = __LO(t, 0); u = t * LG2_H; v = (p_l - (t - p_h)) * LG2 + t * LG2_L; z = u + v; w = v - (z - u); t = z * z; t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); r = (z * t1) / (t1 - 2.0) - (w + z * w); z = 1.0 - (r - z); j = __HI(z); j += (n << 20); if ((j >> 20) <= 0) z = Math.scalb(z, n); // subnormal output else { int z_hi = __HI(z); z_hi += (n << 20); z = __HI(z, z_hi); } return s * z; } private Pow() { throw new UnsupportedOperationException(); } } /** * __ieee754_rem_pio2(x,y) * * return the remainder of x rem pi/2 in y[0]+y[1] use __kernel_rem_pio2() */ static final class RemPio2 { /* * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi */ // @Stable private static final int[] two_over_pi = { 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, }; // @Stable private static final int[] npio2_hw = { 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, 0x404858EB, 0x404921FB, }; /* * invpio2: 53 bits of 2/pi pio2_1: first 33 bit of pi/2 pio2_1t: pi/2 - pio2_1 * pio2_2: second 33 bit of pi/2 pio2_2t: pi/2 - (pio2_1+pio2_2) pio2_3: third * 33 bit of pi/2 pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) */ private static final double invpio2 = 0x1.45f306dc9c883p-1, // 6.36619772367581382433e-01 pio2_1 = 0x1.921fb544p0, // 1.57079632673412561417e+00 pio2_1t = 0x1.0b4611a626331p-34, // 6.07710050650619224932e-11 pio2_2 = 0x1.0b4611a6p-34, // 6.07710050630396597660e-11 pio2_2t = 0x1.3198a2e037073p-69, // 2.02226624879595063154e-21 pio2_3 = 0x1.3198a2ep-69, // 2.02226624871116645580e-21 pio2_3t = 0x1.b839a252049c1p-104; // 8.47842766036889956997e-32 static int __ieee754_rem_pio2(double x, double[] y) { double z = 0.0, w, t, r, fn; double[] tx = new double[3]; int e0, i, j, nx, n, ix, hx; hx = __HI(x); // high word of x ix = hx & EXP_SIGNIF_BITS; if (ix <= 0x3fe9_21fb) { // |x| ~<= pi/4 , no need for reduction y[0] = x; y[1] = 0; return 0; } if (ix < 0x4002_d97c) { // |x| < 3pi/4, special case with n=+-1 if (hx > 0) { z = x - pio2_1; if (ix != 0x3ff9_21fb) { // 33+53 bit pi is good enough y[0] = z - pio2_1t; y[1] = (z - y[0]) - pio2_1t; } else { // near pi/2, use 33+33+53 bit pi z -= pio2_2; y[0] = z - pio2_2t; y[1] = (z - y[0]) - pio2_2t; } return 1; } else { // negative x z = x + pio2_1; if (ix != 0x3ff_921fb) { // 33+53 bit pi is good enough y[0] = z + pio2_1t; y[1] = (z - y[0]) + pio2_1t; } else { // near pi/2, use 33+33+53 bit pi z += pio2_2; y[0] = z + pio2_2t; y[1] = (z - y[0]) + pio2_2t; } return -1; } } if (ix <= 0x4139_21fb) { // |x| ~<= 2^19*(pi/2), medium size t = Math.abs(x); n = (int) (t * invpio2 + 0.5); fn = n; r = t - fn * pio2_1; w = fn * pio2_1t; // 1st round good to 85 bit if (n < 32 && ix != npio2_hw[n - 1]) { y[0] = r - w; // quick check no cancellation } else { j = ix >> 20; y[0] = r - w; i = j - (((__HI(y[0])) >> 20) & 0x7ff); if (i > 16) { // 2nd iteration needed, good to 118 t = r; w = fn * pio2_2; r = t - w; w = fn * pio2_2t - ((t - r) - w); y[0] = r - w; i = j - (((__HI(y[0])) >> 20) & 0x7ff); if (i > 49) { // 3rd iteration need, 151 bits acc t = r; // will cover all possible cases w = fn * pio2_3; r = t - w; w = fn * pio2_3t - ((t - r) - w); y[0] = r - w; } } } y[1] = (r - y[0]) - w; if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return -n; } else { return n; } } /* * all other (large) arguments */ if (ix >= EXP_BITS) { // x is inf or NaN y[0] = y[1] = x - x; return 0; } // set z = scalbn(|x|, ilogb(x)-23) z = __LO(z, __LO(x)); e0 = (ix >> 20) - 1046; // e0 = ilogb(z) - 23; z = __HI(z, ix - (e0 << 20)); for (i = 0; i < 2; i++) { tx[i] = ((int) (z)); z = (z - tx[i]) * TWO24; } tx[2] = z; nx = 3; while (tx[nx - 1] == 0.0) { // skip zero term nx--; } n = KernelRemPio2.__kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi); if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return -n; } return n; } } /** * sin(x) Return sine function of x. * * kernel function: __kernel_sin ... sine function on [-pi/4,pi/4] __kernel_cos * ... cose function on [-pi/4,pi/4] __ieee754_rem_pio2 ... argument reduction * routine * * Method. Let S,C and T denote the sin, cos and tan respectively on [-PI/4, * +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 in [-pi/4 , +pi/4], and let * n = k mod 4. We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- 0 S C T 1 C -S * -1/T 2 -S -C T 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: Let trig be any of sin, cos, or tan. trig(+-INF) is NaN, with * signals; trig(NaN) is that NaN; * * Accuracy: TRIG(x) returns trig(x) nearly rounded */ static final class Sin { /** * __kernel_sin( x, y, iy) kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. Input y is the tail * of x. Input iy indicates whether y is 0. (if iy=0, y assume to be 0). * * Algorithm 1. Since sin(-x) = -sin(x), we need only to consider positive x. 2. * if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. 3. sin(x) is * approximated by a polynomial of degree 13 on [0,pi/4] 3 13 sin(x) ~ x + S1*x * + ... + S6*x where * * |sin(x) 2 4 6 8 10 12 | -58 |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| * <= 2 | x | * * 4. sin(x+y) = sin(x) + sin'(x')*y ~ sin(x) + (1-x*x/2)*y For better accuracy, * let 3 2 2 2 2 r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) then 3 2 sin(x) = x + * (S1*x + (x *(r-y/2)+y)) */ private static final double S1 = -0x1.5555555555549p-3, // -1.66666666666666324348e-01 S2 = 0x1.111111110f8a6p-7, // 8.33333333332248946124e-03 S3 = -0x1.a01a019c161d5p-13, // -1.98412698298579493134e-04 S4 = 0x1.71de357b1fe7dp-19, // 2.75573137070700676789e-06 S5 = -0x1.ae5e68a2b9cebp-26, // -2.50507602534068634195e-08 S6 = 0x1.5d93a5acfd57cp-33; // 1.58969099521155010221e-10 static double __kernel_sin(double x, double y, int iy) { double z, r, v; int ix; ix = __HI(x) & EXP_SIGNIF_BITS; // high word of x if (ix < 0x3e40_0000) { // |x| < 2**-27 if ((int) x == 0) // generate inexact return x; } z = x * x; v = z * x; r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6))); if (iy == 0) { return x + v * (S1 + z * r); } else { return x - ((z * (0.5 * y - v * r) - y) - v * S1); } } static double compute(double x) { double[] y = new double[2]; double z = 0.0; int ix; // High word of x. ix = __HI(x); // |x| ~< pi/4 ix &= EXP_SIGNIF_BITS; if (ix <= 0x3fe9_21fb) { return __kernel_sin(x, z, 0); } else if (ix >= EXP_BITS) { // sin(Inf or NaN) is NaN return x - x; } else { // argument reduction needed final int n = RemPio2.__ieee754_rem_pio2(x, y); switch (n & 3) { case 0: return Sin.__kernel_sin(y[0], y[1], 1); case 1: return Cos.__kernel_cos(y[0], y[1]); case 2: return -Sin.__kernel_sin(y[0], y[1], 1); default: return -Cos.__kernel_cos(y[0], y[1]); } } } private Sin() { throw new UnsupportedOperationException(); } } /** * cos(x) Return cosine function of x. * * kernel function: __kernel_sin ... sine function on [-pi/4,pi/4] __kernel_cos * ... cosine function on [-pi/4,pi/4] __ieee754_rem_pio2 ... argument reduction * routine * * Method. Let S,C and T denote the sin, cos and tan respectively on [-PI/4, * +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 in [-pi/4 , +pi/4], and let * n = k mod 4. We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- 0 S C T 1 C -S * -1/T 2 -S -C T 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: Let trig be any of sin, cos, or tan. trig(+-INF) is NaN, with * signals; trig(NaN) is that NaN; * * Accuracy: TRIG(x) returns trig(x) nearly rounded */ static final class SinCos { static double[] compute(double x) { double theCos; double theSin; // High word of x. int ix = __HI(x); // |x| ~< pi/4 ix &= EXP_SIGNIF_BITS; if (ix <= 0x3fe9_21fb) { final double z = 0.0; theCos = Cos.__kernel_cos(x, z); theSin = Sin.__kernel_sin(x, z, 0); } else if (ix >= EXP_BITS) { // cos(Inf or NaN) is NaN theCos = x - x; theSin = theCos; } else { // argument reduction needed final double[] y = new double[2]; final int n = RemPio2.__ieee754_rem_pio2(x, y); switch (n & 3) { case 0: theSin = Sin.__kernel_sin(y[0], y[1], 1); theCos = Cos.__kernel_cos(y[0], y[1]); break; case 1: theSin = Cos.__kernel_cos(y[0], y[1]); theCos = -Sin.__kernel_sin(y[0], y[1], 1); break; case 2: theSin = -Sin.__kernel_sin(y[0], y[1], 1); theCos = -Cos.__kernel_cos(y[0], y[1]); break; default: theSin = -Cos.__kernel_cos(y[0], y[1]); theCos = Sin.__kernel_sin(y[0], y[1], 1); break; } } return new double[] { theCos, theSin }; } private SinCos() { throw new UnsupportedOperationException(); } } /** * Method : mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 1. * Replace x by |x| (sinh(-x) = -sinh(x)). 2. E + E/(E+1) 0 <= x <= 22 : sinh(x) * := --------------, E=expm1(x) 2 * * 22 <= x <= lnovft : sinh(x) := exp(x)/2 lnovft <= x <= ln2ovft: sinh(x) := * exp(x/2)/2 * exp(x/2) ln2ovft < x : sinh(x) := x*shuge (overflow) * * Special cases: sinh(x) is |x| if x is +INF, -INF, or NaN. only sinh(0)=0 is * exact for finite x. */ static final class Sinh { private static final double shuge = 1.0e307; static double compute(double x) { double t, w, h; int ix, jx; /* unsigned */ int lx; // High word of |x| jx = __HI(x); ix = jx & EXP_SIGNIF_BITS; // x is INF or NaN if (ix >= EXP_BITS) { return x + x; } h = 0.5; if (jx < 0) { h = -h; } // |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) if (ix < 0x4036_0000) { // |x| < 22 if (ix < 0x3e30_0000) // |x| < 2**-28 if (shuge + x > 1.0) { // sinh(tiny) = tiny with inexact return x; } t = StrictMath.expm1(Math.abs(x)); if (ix < 0x3ff0_0000) { return h * (2.0 * t - t * t / (t + 1.0)); } return h * (t + t / (t + 1.0)); } // |x| in [22, log(maxdouble)] return 0.5*exp(|x|) if (ix < 0x4086_2E42) { return h * StrictMath.exp(Math.abs(x)); } // |x| in [log(maxdouble), overflowthreshold] lx = __LO(x); if (ix < 0x4086_33CE || ((ix == 0x4086_33ce) && (Long.compareUnsigned(lx, 0x8fb9_f87d) <= 0))) { w = StrictMath.exp(0.5 * Math.abs(x)); t = h * w; return t * w; } // |x| > overflowthreshold, sinh(x) overflow return x * shuge; } private Sinh() { throw new UnsupportedOperationException(); } } /** * Return correctly rounded sqrt. ------------------------------------------ | * Use the hardware sqrt if you have one | * ------------------------------------------ Method: Bit by bit method using * integer arithmetic. (Slow, but portable) 1. Normalization Scale x to y in * [1,4) with even powers of 2: find an integer k such that 1 <= (y=x*2^(2k)) < * 4, then sqrt(x) = 2^k * sqrt(y) 2. Bit by bit computation Let q = sqrt(y) * truncated to i bit after binary point (q = 1), i 0 i+1 2 s = 2*q , and y = 2 * * ( y - q ). (1) i i i i * * To compute q from q , one checks whether i+1 i * * -(i+1) 2 (q + 2 ) <= y. (2) i -(i+1) If (2) is false, then q = q ; otherwise * q = q + 2 . i+1 i i+1 i * * With some algebraic manipulation, it is not difficult to see that (2) is * equivalent to -(i+1) s + 2 <= y (3) i i * * The advantage of (3) is that s and y can be computed by i i the following * recurrence formula: if (3) is false * * s = s , y = y ; (4) i+1 i i+1 i * * otherwise, -i -(i+1) s = s + 2 , y = y - s - 2 (5) i+1 i i+1 i i * * One may easily use induction to prove (4) and (5). Note. Since the left hand * side of (3) contain only i+2 bits, it does not necessary to do a full * (53-bit) comparison in (3). 3. Final rounding After generating the 53 bits * result, we compute one more bit. Together with the remainder, we can decide * whether the result is exact, bigger than 1/2ulp, or less than 1/2ulp (it will * never equal to 1/2ulp). The rounding mode can be detected by checking whether * huge + tiny is equal to huge, and whether huge - tiny is equal to huge for * some floating point number "huge" and "tiny". * * Special cases: sqrt(+-0) = +-0 ... exact sqrt(inf) = inf sqrt(-ve) = NaN ... * with invalid signal sqrt(NaN) = NaN ... with invalid signal for signaling NaN * * Other methods : see the appended file at the end of the program below. * --------------- */ static final class Sqrt { private static final double tiny = 1.0e-300; static double compute(double x) { double z = 0.0; int sign = SIGN_BIT; /* unsigned */ int r, t1, s1, ix1, q1; int ix0, s0, q, m, t, i; ix0 = __HI(x); // high word of x ix1 = __LO(x); // low word of x // take care of Inf and NaN if ((ix0 & EXP_BITS) == EXP_BITS) { return x * x + x; // sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN } // take care of zero if (ix0 <= 0) { if (((ix0 & (~sign)) | ix1) == 0) return x; // sqrt(+-0) = +-0 else if (ix0 < 0) return (x - x) / (x - x); // sqrt(-ve) = sNaN } // normalize x m = (ix0 >> 20); if (m == 0) { // subnormal x while (ix0 == 0) { m -= 21; ix0 |= (ix1 >>> 11); // unsigned shift ix1 <<= 21; } for (i = 0; (ix0 & 0x0010_0000) == 0; i++) { ix0 <<= 1; } m -= i - 1; ix0 |= (ix1 >>> (32 - i)); // unsigned shift ix1 <<= i; } m -= 1023; // unbias exponent */ ix0 = (ix0 & 0x000f_ffff) | 0x0010_0000; if ((m & 1) != 0) { // odd m, double x to make it even ix0 += ix0 + ((ix1 & sign) >>> 31); // unsigned shift ix1 += ix1; } m >>= 1; // m = [m/2] // generate sqrt(x) bit by bit ix0 += ix0 + ((ix1 & sign) >>> 31); // unsigned shift ix1 += ix1; q = q1 = s0 = s1 = 0; // [q,q1] = sqrt(x) r = 0x0020_0000; // r = moving bit from right to left while (r != 0) { t = s0 + r; if (t <= ix0) { s0 = t + r; ix0 -= t; q += r; } ix0 += ix0 + ((ix1 & sign) >>> 31); // unsigned shift ix1 += ix1; r >>>= 1; // unsigned shift } r = sign; while (r != 0) { t1 = s1 + r; t = s0; if ((t < ix0) || ((t == ix0) && (Integer.compareUnsigned(t1, ix1) <= 0))) { // t1 <= ix1 s1 = t1 + r; if (((t1 & sign) == sign) && (s1 & sign) == 0) { s0 += 1; } ix0 -= t; if (Integer.compareUnsigned(ix1, t1) < 0) { // ix1 < t1 ix0 -= 1; } ix1 -= t1; q1 += r; } ix0 += ix0 + ((ix1 & sign) >>> 31); // unsigned shift ix1 += ix1; r >>>= 1; // unsigned shift } // use floating add to find out rounding direction if ((ix0 | ix1) != 0) { z = 1.0 - tiny; // trigger inexact flag if (z >= 1.0) { z = 1.0 + tiny; if (q1 == 0xffff_ffff) { q1 = 0; q += 1; } else if (z > 1.0) { if (q1 == 0xffff_fffe) { q += 1; } q1 += 2; } else { q1 += (q1 & 1); } } } ix0 = (q >> 1) + 0x3fe0_0000; ix1 = q1 >>> 1; // unsigned shift if ((q & 1) == 1) { ix1 |= sign; } ix0 += (m << 20); return __HI_LO(ix0, ix1); } private Sqrt() { throw new UnsupportedOperationException(); } } /** * tan(x) Return tangent function of x. * * kernel function: __kernel_tan ... tangent function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. Let S,C and T denote the sin, cos and tan respectively on [-PI/4, * +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 in [-pi/4 , +pi/4], and let * n = k mod 4. We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- 0 S C T 1 C -S * -1/T 2 -S -C T 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: Let trig be any of sin, cos, or tan. trig(+-INF) is NaN, with * signals; trig(NaN) is that NaN; * * Accuracy: TRIG(x) returns trig(x) nearly rounded */ static final class Tan { /** * __kernel_tan( x, y, k ) kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. Input y is the tail * of x. Input k indicates whether tan (if k=1) or -1/tan (if k= -1) is * returned. * * Algorithm 1. Since tan(-x) = -tan(x), we need only to consider positive x. 2. * if x < 2^-28 (hx < 0x3e300000 0), return x with inexact if x != 0. 3. tan(x) * is approximated by a odd polynomial of degree 27 on [0, 0.67434] 3 27 tan(x) * ~ x + T1*x + ... + T13*x where * * |tan(x) 2 4 26 | -59.2 |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 | x | * * Note: tan(x+y) = tan(x) + tan'(x)*y ~ tan(x) + (1+x*x)*y Therefore, for * better accuracy in computing tan(x+y), let 3 2 2 2 2 r = x *(T2+x *(T3+x * *(...+x *(T12+x *T13)))) then 3 2 tan(x+y) = x + (T1*x + (x *(r+y)+y)) * * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then tan(x) = tan(pi/4-y) = * (1-tan(y))/(1+tan(y)) = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */ private static final double pio4 = 0x1.921fb54442d18p-1, // 7.85398163397448278999e-01 pio4lo = 0x1.1a62633145c07p-55; // 3.06161699786838301793e-17 // @Stable private static final double[] T = { 0x1.5555555555563p-2, // 3.33333333333334091986e-01 0x1.111111110fe7ap-3, // 1.33333333333201242699e-01 0x1.ba1ba1bb341fep-5, // 5.39682539762260521377e-02 0x1.664f48406d637p-6, // 2.18694882948595424599e-02 0x1.226e3e96e8493p-7, // 8.86323982359930005737e-03 0x1.d6d22c9560328p-9, // 3.59207910759131235356e-03 0x1.7dbc8fee08315p-10, // 1.45620945432529025516e-03 0x1.344d8f2f26501p-11, // 5.88041240820264096874e-04 0x1.026f71a8d1068p-12, // 2.46463134818469906812e-04 0x1.47e88a03792a6p-14, // 7.81794442939557092300e-05 0x1.2b80f32f0a7e9p-14, // 7.14072491382608190305e-05 -0x1.375cbdb605373p-16, // -1.85586374855275456654e-05 0x1.b2a7074bf7ad4p-16, // 2.59073051863633712884e-05 }; static double __kernel_tan(double x, double y, int iy) { double z, r, v, w, s; int ix, hx; hx = __HI(x); // high word of x ix = hx & EXP_SIGNIF_BITS; // high word of |x| if (ix < 0x3e30_0000) { // x < 2**-28 if ((int) x == 0) { // generate inexact if (((ix | __LO(x)) | (iy + 1)) == 0) { return 1.0 / Math.abs(x); } else { if (iy == 1) { return x; } else { // compute -1 / (x+y) carefully double a, t; z = w = x + y; z = __LO(z, 0); v = y - (z - x); t = a = -1.0 / w; t = __LO(t, 0); s = 1.0 + t * z; return t + a * (s + t * v); } } } } if (ix >= 0x3FE5_9428) { // |x| >= 0.6744 if (hx < 0) { x = -x; y = -y; } z = pio4 - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; w = z * z; /* * Break x^5*(T[1]+x^2*T[2]+...) into x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) */ r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11])))); v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12]))))); s = z * x; r = y + z * (s * (r + v) + y); r += T[0] * s; w = x + r; if (ix >= 0x3FE5_9428) { v = iy; return (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r))); } if (iy == 1) { return w; } else { /* * if were to allow error up to 2 ulp, could simply return -1.0/(x + r) here */ // compute -1.0/(x + r) accurately double a, t; z = w; z = __LO(z, 0); v = r - (z - x); // z + v = r + x t = a = -1.0 / w; // a = -1.0/w t = __LO(t, 0); s = 1.0 + t * z; return t + a * (s + t * v); } } static double compute(double x) { double[] y = new double[2]; double z = 0.0; int n, ix; // High word of x. ix = __HI(x); // |x| ~< pi/4 ix &= EXP_SIGNIF_BITS; if (ix <= 0x3fe9_21fb) { return __kernel_tan(x, z, 1); } else if (ix >= EXP_BITS) { // tan(Inf or NaN) is NaN return x - x; // NaN } else { // argument reduction needed n = RemPio2.__ieee754_rem_pio2(x, y); return __kernel_tan(y[0], y[1], 1 - ((n & 1) << 1)); // 1 -- n even; -1 -- n odd } } private Tan() { throw new UnsupportedOperationException(); } } /** * Return the Hyperbolic Tangent of x * * Method : x -x e - e 0. tanh(x) is defined to be ----------- x -x e + e 1. * reduce x to non-negative by tanh(-x) = -tanh(x). 2. 0 <= x <= 2**-55 : * tanh(x) := x*(one+x) -t 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) t * + 2 2 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) t + 2 22.0 < x <= * INF : tanh(x) := 1. * * Special cases: tanh(NaN) is NaN; only tanh(0)=0 is exact for finite argument. */ static final class Tanh { private static final double tiny = 1.0e-300; static double compute(double x) { double t, z; int jx, ix; // High word of |x|. jx = __HI(x); ix = jx & EXP_SIGNIF_BITS; // x is INF or NaN if (ix >= EXP_BITS) { if (jx >= 0) { // tanh(+-inf)=+-1 return 1.0 / x + 1.0; } else { // tanh(NaN) = NaN return 1.0 / x - 1.0; } } // |x| < 22 if (ix < 0x4036_0000) { // |x| < 22 if (ix < 0x3c80_0000) // |x| < 2**-55 return x * (1.0 + x); // tanh(small) = small if (ix >= 0x3ff0_0000) { // |x| >= 1 t = StrictMath.expm1(2.0 * Math.abs(x)); z = 1.0 - 2.0 / (t + 2.0); } else { t = StrictMath.expm1(-2.0 * Math.abs(x)); z = -t / (t + 2.0); } } else { // |x| > 22, return +-1 z = 1.0 - tiny; // raised inexact flag } return (jx >= 0) ? z : -z; } private Tanh() { throw new UnsupportedOperationException(); } } // The following comment is supplementary information from the FDLIBM sources. /* * Other methods (use floating-point arithmetic) ------------- (This is a copy * of a drafted paper by Prof W. Kahan and K.C. Ng, written in May, 1986) * * Two algorithms are given here to implement sqrt(x) (IEEE double precision * arithmetic) in software. Both supply sqrt(x) correctly rounded. The first * algorithm (in Section A) uses newton iterations and involves four divisions. * The second one uses reciproot iterations to avoid division, but requires more * multiplications. Both algorithms need the ability to chop results of * arithmetic operations instead of round them, and the INEXACT flag to indicate * when an arithmetic operation is executed exactly with no roundoff error, all * part of the standard (IEEE 754-1985). The ability to perform shift, add, * subtract and logical AND operations upon 32-bit words is needed too, though * not part of the standard. * * A. sqrt(x) by Newton Iteration * * (1) Initial approximation * * Let x0 and x1 be the leading and the trailing 32-bit words of a floating * point number x (in IEEE double format) respectively * * 1 11 52 ...widths ------------------------------------------------------ x: * |s| e | f | ------------------------------------------------------ msb lsb * msb lsb ...order * * * ------------------------ ------------------------ x0: |s| e | f1 | x1: | f2 | * ------------------------ ------------------------ * * By performing shifts and subtracts on x0 and x1 (both regarded as integers), * we obtain an 8-bit approximation of sqrt(x) as follows. * * k := (x0>>1) + 0x1ff80000; y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 * bits Here k is a 32-bit integer and T1[] is an integer array containing * correction terms. Now magically the floating value of y (y's leading 32-bit * word is y0, the value of its trailing word is 0) approximates sqrt(x) to * almost 8-bit. * * Value of T1: static int T1[32]= { 0, 1024, 3062, 5746, 9193, 13348, 18162, * 23592, 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, 83599, 71378, * 60428, 50647, 41945, 34246, 27478, 21581, 16499, 12183, 8588, 5674, 3403, * 1742, 661, 130,}; * * (2) Iterative refinement * * Apply Heron's rule three times to y, we have y approximates sqrt(x) to within * 1 ulp (Unit in the Last Place): * * y := (y+x/y)/2 ... almost 17 sig. bits y := (y+x/y)/2 ... almost 35 sig. bits * y := y-(y-x/y)/2 ... within 1 ulp * * * Remark 1. Another way to improve y to within 1 ulp is: * * y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) y := y - 0x00100006 ... * almost 18 sig. bits to sqrt(x) * * 2 (x-y )*y y := y + 2* ---------- ...within 1 ulp 2 3y + x * * * This formula has one division fewer than the one above; however, it requires * more multiplications and additions. Also x must be scaled in advance to avoid * spurious overflow in evaluating the expression 3y*y+x. Hence it is not * recommended unless division is slow. If division is very slow, then one * should use the reciproot algorithm given in section B. * * (3) Final adjustment * * By twiddling y's last bit it is possible to force y to be correctly rounded * according to the prevailing rounding mode as follows. Let r and i be copies * of the rounding mode and inexact flag before entering the square root * program. Also we use the expression y+-ulp for the next representable * floating numbers (up and down) of y. Note that y+-ulp = either fixed point * y+-1, or multiply y by nextafter(1,+-inf) in chopped mode. * * I := FALSE; ... reset INEXACT flag I R := RZ; ... set rounding mode to * round-toward-zero z := x/y; ... chopped quotient, possibly inexact If(not I) * then { ... if the quotient is exact if(z=y) { I := i; ... restore inexact * flag R := r; ... restore rounded mode return sqrt(x):=y. } else { z := z - * ulp; ... special rounding } } i := TRUE; ... sqrt(x) is inexact If (r=RN) * then z=z+ulp ... rounded-to-nearest If (r=RP) then { ... round-toward-+inf y * = y+ulp; z=z+ulp; } y := y+z; ... chopped sum y0:=y0-0x00100000; ... y := y/2 * is correctly rounded. I := i; ... restore inexact flag R := r; ... restore * rounded mode return sqrt(x):=y. * * (4) Special cases * * Square root of +inf, +-0, or NaN is itself; Square root of a negative number * is NaN with invalid signal. * * * B. sqrt(x) by Reciproot Iteration * * (1) Initial approximation * * Let x0 and x1 be the leading and the trailing 32-bit words of a floating * point number x (in IEEE double format) respectively (see section A). By * performing shifs and subtracts on x0 and y0, we obtain a 7.8-bit * approximation of 1/sqrt(x) as follows. * * k := 0x5fe80000 - (x0>>1); y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 * bits * * Here k is a 32-bit integer and T2[] is an integer array containing correction * terms. Now magically the floating value of y (y's leading 32-bit word is y0, * the value of its trailing word y1 is set to zero) approximates 1/sqrt(x) to * almost 7.8-bit. * * Value of T2: static int T2[64]= { 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, * 0xa395, 0xbe7a, 0xd866, 0xf14a, * 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, * 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, * 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, * 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, * 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, * 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, * 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; * * (2) Iterative refinement * * Apply Reciproot iteration three times to y and multiply the result by x to * get an approximation z that matches sqrt(x) to about 1 ulp. To be exact, we * will have -1ulp < sqrt(x)-z<1.0625ulp. * * ... set rounding mode to Round-to-nearest y := y*(1.5-0.5*x*y*y) ... almost * 15 sig. bits to 1/sqrt(x) y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. * bits to 1/sqrt(x) ... special arrangement for better accuracy z := x*y ... 29 * bits to sqrt(x), with z*y<1 z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) * * Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that (a) the * term z*y in the final iteration is always less than 1; (b) the error in the * final result is biased upward so that -1 ulp < sqrt(x) - z < 1.0625 ulp * instead of |sqrt(x)-z|<1.03125ulp. * * (3) Final adjustment * * By twiddling y's last bit it is possible to force y to be correctly rounded * according to the prevailing rounding mode as follows. Let r and i be copies * of the rounding mode and inexact flag before entering the square root * program. Also we use the expression y+-ulp for the next representable * floating numbers (up and down) of y. Note that y+-ulp = either fixed point * y+-1, or multiply y by nextafter(1,+-inf) in chopped mode. * * R := RZ; ... set rounding mode to round-toward-zero switch(r) { case RN: ... * round-to-nearest if(x<= z*(z-ulp)...chopped) z = z - ulp; else if(x<= * z*(z+ulp)...chopped) z = z; else z = z+ulp; break; case RZ:case RM: ... * round-to-zero or round-to--inf R:=RP; ... reset rounding mod to round-to-+inf * if(x=(z+ulp)*(z+ulp) ...rounded * up) z = z+ulp; break; case RP: ... round-to-+inf * if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else if(x>z*z ...chopped) z = * z+ulp; break; } * * Remark 3. The above comparisons can be done in fixed point. For example, to * compare x and w=z*z chopped, it suffices to compare x1 and w1 (the trailing * parts of x and w), regarding them as two's complement integers. * * ...Is z an exact square root? To determine whether z is an exact square root * of x, let z1 be the trailing part of z, and also let x0 and x1 be the leading * and trailing parts of x. * * If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 I := 1; ... * Raise Inexact flag: z is not exact else { j := 1 - [(x0>>20)&1] ... j = * logb(x) mod 2 k := z1 >> 26; ... get z's 25-th and 26-th fraction bits I := i * or (k&j) or ((k&(j+j+1))!=(x1&3)); } R:= r ... restore rounded mode return * sqrt(x):=z. * * If multiplication is cheaper then the foregoing red tape, the Inexact flag * can be evaluated by * * I := i; I := (z*z!=x) or I. * * Note that z*z can overwrite I; this value must be sensed if it is True. * * Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be zero. * * -------------------- z1: | f2 | -------------------- bit 31 bit 0 * * Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd or even of * logb(x) have the following relations: * * ------------------------------------------------- bit 27,26 of z1 bit 1,0 of * x1 logb(x) ------------------------------------------------- 00 00 odd and * even 01 01 even 10 10 odd 10 00 even 11 01 even * ------------------------------------------------- * * (4) Special cases (see (4) of Section A). */ // Constants used by multiple algorithms private static final double INFINITY = Double.POSITIVE_INFINITY; private static final double TWO24 = 0x1.0p24; // 1.67772160000000000000e+07 private static final double TWO54 = 0x1.0p54; // 1.80143985094819840000e+16 private static final double HUGE = 1.0e+300; /* * Constants for bit-wise manipulation of IEEE 754 double values. These * constants are for the high-order 32-bits of a 64-bit double value: 1 sign bit * as the most significant bit, followed by 11 exponent bits, and then the * remaining bits as the significand. */ private static final int SIGN_BIT = 0x8000_0000; private static final int EXP_BITS = 0x7ff0_0000; private static final int EXP_SIGNIF_BITS = 0x7fff_ffff; /** * Return the high-order 32 bits of the double argument as an int. */ private static int __HI(double x) { long transducer = Double.doubleToRawLongBits(x); return (int) (transducer >> 32); } /** * Return a double with its high-order bits of the second argument and the * low-order bits of the first argument.. */ private static double __HI(double x, int high) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) | (((long) high)) << 32); } /** * Return a double with its high-order bits of the first argument and the * low-order bits of the second argument.. */ private static double __HI_LO(int high, int low) { return Double.longBitsToDouble(((long) high << 32) | (low & 0xffff_ffffL)); } /** * Return the low-order 32 bits of the double argument as an int. */ private static int __LO(double x) { long transducer = Double.doubleToRawLongBits(x); return (int) transducer; } /** * Return a double with its low-order bits of the second argument and the * high-order bits of the first argument.. */ private static double __LO(double x, int low) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) | (low & 0x0000_0000_FFFF_FFFFL)); } private FdLibm() { throw new UnsupportedOperationException("No FdLibm instances for you."); } }