CubicCurve2D backports - review

Dr Andrew John Hughes ahughes at redhat.com
Tue Feb 1 09:51:39 PST 2011


On 11:40 Tue 01 Feb     , Denis Lila wrote:
> > Would be easier to just attach the result of hg diff which would
> > include the patches :-)
> 
> Yeah, I thought about that, but I always find it unpleasant to
> read the patch contents in an hg diff because of all the '++'
> and such.
> 

But it means no-one can apply the exact patch as you have it.

> > Please include a complete backport of 4645692 now.  The tests are important.
> 
> Ok. I attached the new hg.diff.
> Is this good to go?
> 

Assuming all these are now complete backports of the original changesets (as I
originally supposed, as you didn't state otherwise), then yes.

> Thank you,
> Denis.

> diff -r 0c86bdc188d3 ChangeLog
> --- a/ChangeLog	Tue Feb 01 09:20:39 2011 +0100
> +++ b/ChangeLog	Tue Feb 01 11:40:06 2011 -0500
> @@ -1,3 +1,11 @@
> +2011-02-01  Denis Lila <dlila at redhat.com>
> +
> +	* NEWS: Update with the 3 backports
> +	* Makefile.am (ICEDTEA_PATCHES): Add the patches
> +	* patches/openjdk/4493128-CubicCurve2D.patch: New file.
> +	* patches/openjdk/4645692-CubicCurve2D.solveCubic.patch: Likewise.
> +	* patches/openjdk/4724552-CubicCurve2D.patch: Likewise.
> +
>  2011-02-01  Pavel Tisnovsky  <ptisnovs at redhat.com>
>  
>  	* patches/jtreg-png-reader.patch:
> diff -r 0c86bdc188d3 Makefile.am
> --- a/Makefile.am	Tue Feb 01 09:20:39 2011 +0100
> +++ b/Makefile.am	Tue Feb 01 11:40:06 2011 -0500
> @@ -276,7 +276,10 @@
>  	patches/openjdk/6736649-text_bearings.patch \
>  	patches/openjdk/6797139-jbutton_truncation.patch \
>  	patches/openjdk/6883341-text_bearing_exception.patch \
> -	patches/jtreg-png-reader.patch
> +	patches/jtreg-png-reader.patch \
> +	patches/openjdk/4724552-CubicCurve2D.patch \
> +	patches/openjdk/4493128-CubicCurve2D.patch \
> +	patches/openjdk/4645692-CubicCurve2D.solveCubic.patch
>  
>  if !WITH_ALT_HSBUILD
>  ICEDTEA_PATCHES += \
> diff -r 0c86bdc188d3 NEWS
> --- a/NEWS	Tue Feb 01 09:20:39 2011 +0100
> +++ b/NEWS	Tue Feb 01 11:40:06 2011 -0500
> @@ -403,6 +403,9 @@
>    - S6736649: test/closed/javax/swing/JMenuItem/6458123/ManualBug6458123.java fails on Linux
>    - S6797139: JButton title is truncating for some strings irrespective of preferred size.
>    - S6883341: SWAT: jdk7-b72 swat build(2009-09-17) threw exceptions when running Java2D demo by clicking Paint ta
> +  - S4493128: CubicCurve2D intersects method fails
> +  - S4724552: CubicCurve2D.contains(Rectangle2D) returns true when partially contained.
> +  - S4645692: CubicCurve2D.solveCubic does not return all solutions.
>  * Bug fixes
>    - RH647157, RH582455: Update fontconfig files for rhel 6
>    - RH661505: JPEGs with sRGB IEC61966-2.1 color profiles have wrong colors
> diff -r 0c86bdc188d3 patches/openjdk/4493128-CubicCurve2D.patch
> --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
> +++ b/patches/openjdk/4493128-CubicCurve2D.patch	Tue Feb 01 11:40:06 2011 -0500
> @@ -0,0 +1,213 @@
> +--- openjdk/jdk/src/share/classes/java/awt/geom/CubicCurve2D.java.old	2011-01-31 12:38:24.340733697 -0500
> ++++ openjdk/jdk/src/share/classes/java/awt/geom/CubicCurve2D.java	2011-01-31 12:54:27.462601773 -0500
> +@@ -1387,203 +1387,13 @@
> +             return false;
> +         }
> + 
> +-        // Trivially accept if either endpoint is inside the rectangle
> +-        // (not on its border since it may end there and not go inside)
> +-        // Record where they lie with respect to the rectangle.
> +-        //     -1 => left, 0 => inside, 1 => right
> +-        double x1 = getX1();
> +-        double y1 = getY1();
> +-        int x1tag = getTag(x1, x, x+w);
> +-        int y1tag = getTag(y1, y, y+h);
> +-        if (x1tag == INSIDE && y1tag == INSIDE) {
> +-            return true;
> +-        }
> +-        double x2 = getX2();
> +-        double y2 = getY2();
> +-        int x2tag = getTag(x2, x, x+w);
> +-        int y2tag = getTag(y2, y, y+h);
> +-        if (x2tag == INSIDE && y2tag == INSIDE) {
> +-            return true;
> +-        }
> +-
> +-        double ctrlx1 = getCtrlX1();
> +-        double ctrly1 = getCtrlY1();
> +-        double ctrlx2 = getCtrlX2();
> +-        double ctrly2 = getCtrlY2();
> +-        int ctrlx1tag = getTag(ctrlx1, x, x+w);
> +-        int ctrly1tag = getTag(ctrly1, y, y+h);
> +-        int ctrlx2tag = getTag(ctrlx2, x, x+w);
> +-        int ctrly2tag = getTag(ctrly2, y, y+h);
> +-
> +-        // Trivially reject if all points are entirely to one side of
> +-        // the rectangle.
> +-        if (x1tag < INSIDE && x2tag < INSIDE &&
> +-            ctrlx1tag < INSIDE && ctrlx2tag < INSIDE)
> +-        {
> +-            return false;       // All points left
> +-        }
> +-        if (y1tag < INSIDE && y2tag < INSIDE &&
> +-            ctrly1tag < INSIDE && ctrly2tag < INSIDE)
> +-        {
> +-            return false;       // All points above
> +-        }
> +-        if (x1tag > INSIDE && x2tag > INSIDE &&
> +-            ctrlx1tag > INSIDE && ctrlx2tag > INSIDE)
> +-        {
> +-            return false;       // All points right
> +-        }
> +-        if (y1tag > INSIDE && y2tag > INSIDE &&
> +-            ctrly1tag > INSIDE && ctrly2tag > INSIDE)
> +-        {
> +-            return false;       // All points below
> +-        }
> +-
> +-        // Test for endpoints on the edge where either the segment
> +-        // or the curve is headed "inwards" from them
> +-        // Note: These tests are a superset of the fast endpoint tests
> +-        //       above and thus repeat those tests, but take more time
> +-        //       and cover more cases
> +-        if (inwards(x1tag, x2tag, ctrlx1tag) &&
> +-            inwards(y1tag, y2tag, ctrly1tag))
> +-        {
> +-            // First endpoint on border with either edge moving inside
> +-            return true;
> +-        }
> +-        if (inwards(x2tag, x1tag, ctrlx2tag) &&
> +-            inwards(y2tag, y1tag, ctrly2tag))
> +-        {
> +-            // Second endpoint on border with either edge moving inside
> +-            return true;
> +-        }
> +-
> +-        // Trivially accept if endpoints span directly across the rectangle
> +-        boolean xoverlap = (x1tag * x2tag <= 0);
> +-        boolean yoverlap = (y1tag * y2tag <= 0);
> +-        if (x1tag == INSIDE && x2tag == INSIDE && yoverlap) {
> +-            return true;
> +-        }
> +-        if (y1tag == INSIDE && y2tag == INSIDE && xoverlap) {
> +-            return true;
> +-        }
> +-
> +-        // We now know that both endpoints are outside the rectangle
> +-        // but the 4 points are not all on one side of the rectangle.
> +-        // Therefore the curve cannot be contained inside the rectangle,
> +-        // but the rectangle might be contained inside the curve, or
> +-        // the curve might intersect the boundary of the rectangle.
> +-
> +-        double[] eqn = new double[4];
> +-        double[] res = new double[4];
> +-        if (!yoverlap) {
> +-            // Both y coordinates for the closing segment are above or
> +-            // below the rectangle which means that we can only intersect
> +-            // if the curve crosses the top (or bottom) of the rectangle
> +-            // in more than one place and if those crossing locations
> +-            // span the horizontal range of the rectangle.
> +-            fillEqn(eqn, (y1tag < INSIDE ? y : y+h), y1, ctrly1, ctrly2, y2);
> +-            int num = solveCubic(eqn, res);
> +-            num = evalCubic(res, num, true, true, null,
> +-                            x1, ctrlx1, ctrlx2, x2);
> +-            // odd counts imply the crossing was out of [0,1] bounds
> +-            // otherwise there is no way for that part of the curve to
> +-            // "return" to meet its endpoint
> +-            return (num == 2 &&
> +-                    getTag(res[0], x, x+w) * getTag(res[1], x, x+w) <= 0);
> +-        }
> +-
> +-        // Y ranges overlap.  Now we examine the X ranges
> +-        if (!xoverlap) {
> +-            // Both x coordinates for the closing segment are left of
> +-            // or right of the rectangle which means that we can only
> +-            // intersect if the curve crosses the left (or right) edge
> +-            // of the rectangle in more than one place and if those
> +-            // crossing locations span the vertical range of the rectangle.
> +-            fillEqn(eqn, (x1tag < INSIDE ? x : x+w), x1, ctrlx1, ctrlx2, x2);
> +-            int num = solveCubic(eqn, res);
> +-            num = evalCubic(res, num, true, true, null,
> +-                            y1, ctrly1, ctrly2, y2);
> +-            // odd counts imply the crossing was out of [0,1] bounds
> +-            // otherwise there is no way for that part of the curve to
> +-            // "return" to meet its endpoint
> +-            return (num == 2 &&
> +-                    getTag(res[0], y, y+h) * getTag(res[1], y, y+h) <= 0);
> +-        }
> +-
> +-        // The X and Y ranges of the endpoints overlap the X and Y
> +-        // ranges of the rectangle, now find out how the endpoint
> +-        // line segment intersects the Y range of the rectangle
> +-        double dx = x2 - x1;
> +-        double dy = y2 - y1;
> +-        double k = y2 * x1 - x2 * y1;
> +-        int c1tag, c2tag;
> +-        if (y1tag == INSIDE) {
> +-            c1tag = x1tag;
> +-        } else {
> +-            c1tag = getTag((k + dx * (y1tag < INSIDE ? y : y+h)) / dy, x, x+w);
> +-        }
> +-        if (y2tag == INSIDE) {
> +-            c2tag = x2tag;
> +-        } else {
> +-            c2tag = getTag((k + dx * (y2tag < INSIDE ? y : y+h)) / dy, x, x+w);
> +-        }
> +-        // If the part of the line segment that intersects the Y range
> +-        // of the rectangle crosses it horizontally - trivially accept
> +-        if (c1tag * c2tag <= 0) {
> +-            return true;
> +-        }
> +-
> +-        // Now we know that both the X and Y ranges intersect and that
> +-        // the endpoint line segment does not directly cross the rectangle.
> +-        //
> +-        // We can almost treat this case like one of the cases above
> +-        // where both endpoints are to one side, except that we may
> +-        // get one or three intersections of the curve with the vertical
> +-        // side of the rectangle.  This is because the endpoint segment
> +-        // accounts for the other intersection in an even pairing.  Thus,
> +-        // with the endpoint crossing we end up with 2 or 4 total crossings.
> +-        //
> +-        // (Remember there is overlap in both the X and Y ranges which
> +-        //  means that the segment itself must cross at least one vertical
> +-        //  edge of the rectangle - in particular, the "near vertical side"
> +-        //  - leaving an odd number of intersections for the curve.)
> +-        //
> +-        // Now we calculate the y tags of all the intersections on the
> +-        // "near vertical side" of the rectangle.  We will have one with
> +-        // the endpoint segment, and one or three with the curve.  If
> +-        // any pair of those vertical intersections overlap the Y range
> +-        // of the rectangle, we have an intersection.  Otherwise, we don't.
> +-
> +-        // c1tag = vertical intersection class of the endpoint segment
> +-        //
> +-        // Choose the y tag of the endpoint that was not on the same
> +-        // side of the rectangle as the subsegment calculated above.
> +-        // Note that we can "steal" the existing Y tag of that endpoint
> +-        // since it will be provably the same as the vertical intersection.
> +-        c1tag = ((c1tag * x1tag <= 0) ? y1tag : y2tag);
> +-
> +-        // Now we have to calculate an array of solutions of the curve
> +-        // with the "near vertical side" of the rectangle.  Then we
> +-        // need to sort the tags and do a pairwise range test to see
> +-        // if either of the pairs of crossings spans the Y range of
> +-        // the rectangle.
> +-        //
> +-        // Note that the c2tag can still tell us which vertical edge
> +-        // to test against.
> +-        fillEqn(eqn, (c2tag < INSIDE ? x : x+w), x1, ctrlx1, ctrlx2, x2);
> +-        int num = solveCubic(eqn, res);
> +-        num = evalCubic(res, num, true, true, null, y1, ctrly1, ctrly2, y2);
> +-
> +-        // Now put all of the tags into a bucket and sort them.  There
> +-        // is an intersection iff one of the pairs of tags "spans" the
> +-        // Y range of the rectangle.
> +-        int tags[] = new int[num+1];
> +-        for (int i = 0; i < num; i++) {
> +-            tags[i] = getTag(res[i], y, y+h);
> +-        }
> +-        tags[num] = c1tag;
> +-        Arrays.sort(tags);
> +-        return ((num >= 1 && tags[0] * tags[1] <= 0) ||
> +-                (num >= 3 && tags[2] * tags[3] <= 0));
> ++        int numCrossings = rectCrossings(x, y, w, h);
> ++        // the intended return value is
> ++        // numCrossings != 0 || numCrossings == Curve.RECT_INTERSECTS
> ++        // but if (numCrossings != 0) numCrossings == INTERSECTS won't matter
> ++        // and if !(numCrossings != 0) then numCrossings == 0, so
> ++        // numCrossings != RECT_INTERSECT
> ++        return numCrossings != 0;
> +     }
> + 
> +     /**
> diff -r 0c86bdc188d3 patches/openjdk/4645692-CubicCurve2D.solveCubic.patch
> --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
> +++ b/patches/openjdk/4645692-CubicCurve2D.solveCubic.patch	Tue Feb 01 11:40:06 2011 -0500
> @@ -0,0 +1,717 @@
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/java/awt/geom/CubicCurve2D.java ./openjdk/jdk/src/share/classes/java/awt/geom/CubicCurve2D.java
> +--- ./openjdk.old/jdk/src/share/classes/java/awt/geom/CubicCurve2D.java	2011-02-01 10:52:21.560149275 -0500
> ++++ ./openjdk/jdk/src/share/classes/java/awt/geom/CubicCurve2D.java	2011-02-01 10:52:37.112148647 -0500
> +@@ -31,6 +31,10 @@
> + import java.io.Serializable;
> + import sun.awt.geom.Curve;
> + 
> ++import static java.lang.Math.abs;
> ++import static java.lang.Math.max;
> ++import static java.lang.Math.ulp;
> ++
> + /**
> +  * The <code>CubicCurve2D</code> class defines a cubic parametric curve
> +  * segment in {@code (x,y)} coordinate space.
> +@@ -1083,95 +1087,286 @@
> +      * @since 1.3
> +      */
> +     public static int solveCubic(double eqn[], double res[]) {
> +-        // From Numerical Recipes, 5.6, Quadratic and Cubic Equations
> +-        double d = eqn[3];
> +-        if (d == 0.0) {
> +-            // The cubic has degenerated to quadratic (or line or ...).
> ++        // From Graphics Gems:
> ++        // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
> ++        final double d = eqn[3];
> ++        if (d == 0) {
> +             return QuadCurve2D.solveQuadratic(eqn, res);
> +         }
> +-        double a = eqn[2] / d;
> +-        double b = eqn[1] / d;
> +-        double c = eqn[0] / d;
> +-        int roots = 0;
> +-        double Q = (a * a - 3.0 * b) / 9.0;
> +-        double R = (2.0 * a * a * a - 9.0 * a * b + 27.0 * c) / 54.0;
> +-        double R2 = R * R;
> +-        double Q3 = Q * Q * Q;
> +-        a = a / 3.0;
> +-        if (R2 < Q3) {
> +-            double theta = Math.acos(R / Math.sqrt(Q3));
> +-            Q = -2.0 * Math.sqrt(Q);
> ++
> ++        /* normal form: x^3 + Ax^2 + Bx + C = 0 */
> ++        final double A = eqn[2] / d;
> ++        final double B = eqn[1] / d;
> ++        final double C = eqn[0] / d;
> ++
> ++
> ++        //  substitute x = y - A/3 to eliminate quadratic term:
> ++        //     x^3 +Px + Q = 0
> ++        //
> ++        // Since we actually need P/3 and Q/2 for all of the
> ++        // calculations that follow, we will calculate
> ++        // p = P/3
> ++        // q = Q/2
> ++        // instead and use those values for simplicity of the code.
> ++        double sq_A = A * A;
> ++        double p = 1.0/3 * (-1.0/3 * sq_A + B);
> ++        double q = 1.0/2 * (2.0/27 * A * sq_A - 1.0/3 * A * B + C);
> ++
> ++        /* use Cardano's formula */
> ++
> ++        double cb_p = p * p * p;
> ++        double D = q * q + cb_p;
> ++
> ++        final double sub = 1.0/3 * A;
> ++
> ++        int num;
> ++        if (D < 0) { /* Casus irreducibilis: three real solutions */
> ++            // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
> ++            double phi = 1.0/3 * Math.acos(-q / Math.sqrt(-cb_p));
> ++            double t = 2 * Math.sqrt(-p);
> ++
> +             if (res == eqn) {
> +-                // Copy the eqn so that we don't clobber it with the
> +-                // roots.  This is needed so that fixRoots can do its
> +-                // work with the original equation.
> +-                eqn = new double[4];
> +-                System.arraycopy(res, 0, eqn, 0, 4);
> ++                eqn = Arrays.copyOf(eqn, 4);
> +             }
> +-            res[roots++] = Q * Math.cos(theta / 3.0) - a;
> +-            res[roots++] = Q * Math.cos((theta + Math.PI * 2.0)/ 3.0) - a;
> +-            res[roots++] = Q * Math.cos((theta - Math.PI * 2.0)/ 3.0) - a;
> +-            fixRoots(res, eqn);
> +-        } else {
> +-            boolean neg = (R < 0.0);
> +-            double S = Math.sqrt(R2 - Q3);
> +-            if (neg) {
> +-                R = -R;
> ++
> ++            res[ 0 ] =  ( t * Math.cos(phi));
> ++            res[ 1 ] =  (-t * Math.cos(phi + Math.PI / 3));
> ++            res[ 2 ] =  (-t * Math.cos(phi - Math.PI / 3));
> ++            num = 3;
> ++
> ++            for (int i = 0; i < num; ++i) {
> ++                res[ i ] -= sub;
> +             }
> +-            double A = Math.pow(R + S, 1.0 / 3.0);
> +-            if (!neg) {
> +-                A = -A;
> ++
> ++        } else {
> ++            // Please see the comment in fixRoots marked 'XXX' before changing
> ++            // any of the code in this case.
> ++            double sqrt_D = Math.sqrt(D);
> ++            double u = Math.cbrt(sqrt_D - q);
> ++            double v = - Math.cbrt(sqrt_D + q);
> ++            double uv = u+v;
> ++
> ++            num = 1;
> ++
> ++            double err = 1200000000*ulp(abs(uv) + abs(sub));
> ++            if (iszero(D, err) || within(u, v, err)) {
> ++                if (res == eqn) {
> ++                    eqn = Arrays.copyOf(eqn, 4);
> ++                }
> ++                res[1] = -(uv / 2) - sub;
> ++                num = 2;
> +             }
> +-            double B = (A == 0.0) ? 0.0 : (Q / A);
> +-            res[roots++] = (A + B) - a;
> ++            // this must be done after the potential Arrays.copyOf
> ++            res[ 0 ] =  uv - sub;
> +         }
> +-        return roots;
> ++
> ++        if (num > 1) { // num == 3 || num == 2
> ++            num = fixRoots(eqn, res, num);
> ++        }
> ++        if (num > 2 && (res[2] == res[1] || res[2] == res[0])) {
> ++            num--;
> ++        }
> ++        if (num > 1 && res[1] == res[0]) {
> ++            res[1] = res[--num]; // Copies res[2] to res[1] if needed
> ++        }
> ++        return num;
> ++    }
> ++
> ++    // preconditions: eqn != res && eqn[3] != 0 && num > 1
> ++    // This method tries to improve the accuracy of the roots of eqn (which
> ++    // should be in res). It also might eliminate roots in res if it decideds
> ++    // that they're not real roots. It will not check for roots that the
> ++    // computation of res might have missed, so this method should only be
> ++    // used when the roots in res have been computed using an algorithm
> ++    // that never underestimates the number of roots (such as solveCubic above)
> ++    private static int fixRoots(double[] eqn, double[] res, int num) {
> ++        double[] intervals = {eqn[1], 2*eqn[2], 3*eqn[3]};
> ++        int critCount = QuadCurve2D.solveQuadratic(intervals, intervals);
> ++        if (critCount == 2 && intervals[0] == intervals[1]) {
> ++            critCount--;
> ++        }
> ++        if (critCount == 2 && intervals[0] > intervals[1]) {
> ++            double tmp = intervals[0];
> ++            intervals[0] = intervals[1];
> ++            intervals[1] = tmp;
> ++        }
> ++
> ++        // below we use critCount to possibly filter out roots that shouldn't
> ++        // have been computed. We require that eqn[3] != 0, so eqn is a proper
> ++        // cubic, which means that its limits at -/+inf are -/+inf or +/-inf.
> ++        // Therefore, if critCount==2, the curve is shaped like a sideways S,
> ++        // and it could have 1-3 roots. If critCount==0 it is monotonic, and
> ++        // if critCount==1 it is monotonic with a single point where it is
> ++        // flat. In the last 2 cases there can only be 1 root. So in cases
> ++        // where num > 1 but critCount < 2, we eliminate all roots in res
> ++        // except one.
> ++
> ++        if (num == 3) {
> ++            double xe = getRootUpperBound(eqn);
> ++            double x0 = -xe;
> ++
> ++            Arrays.sort(res, 0, num);
> ++            if (critCount == 2) {
> ++                // this just tries to improve the accuracy of the computed
> ++                // roots using Newton's method.
> ++                res[0] = refineRootWithHint(eqn, x0, intervals[0], res[0]);
> ++                res[1] = refineRootWithHint(eqn, intervals[0], intervals[1], res[1]);
> ++                res[2] = refineRootWithHint(eqn, intervals[1], xe, res[2]);
> ++                return 3;
> ++            } else if (critCount == 1) {
> ++                // we only need fx0 and fxe for the sign of the polynomial
> ++                // at -inf and +inf respectively, so we don't need to do
> ++                // fx0 = solveEqn(eqn, 3, x0); fxe = solveEqn(eqn, 3, xe)
> ++                double fxe = eqn[3];
> ++                double fx0 = -fxe;
> ++
> ++                double x1 = intervals[0];
> ++                double fx1 = solveEqn(eqn, 3, x1);
> ++
> ++                // if critCount == 1 or critCount == 0, but num == 3 then
> ++                // something has gone wrong. This branch and the one below
> ++                // would ideally never execute, but if they do we can't know
> ++                // which of the computed roots is closest to the real root;
> ++                // therefore, we can't use refineRootWithHint. But even if
> ++                // we did know, being here most likely means that the
> ++                // curve is very flat close to two of the computed roots
> ++                // (or maybe even all three). This might make Newton's method
> ++                // fail altogether, which would be a pain to detect and fix.
> ++                // This is why we use a very stable bisection method.
> ++                if (oppositeSigns(fx0, fx1)) {
> ++                    res[0] = bisectRootWithHint(eqn, x0, x1, res[0]);
> ++                } else if (oppositeSigns(fx1, fxe)) {
> ++                    res[0] = bisectRootWithHint(eqn, x1, xe, res[2]);
> ++                } else /* fx1 must be 0 */ {
> ++                    res[0] = x1;
> ++                }
> ++                // return 1
> ++            } else if (critCount == 0) {
> ++                res[0] = bisectRootWithHint(eqn, x0, xe, res[1]);
> ++                // return 1
> ++            }
> ++        } else if (num == 2 && critCount == 2) {
> ++            // XXX: here we assume that res[0] has better accuracy than res[1].
> ++            // This is true because this method is only used from solveCubic
> ++            // which puts in res[0] the root that it would compute anyway even
> ++            // if num==1. If this method is ever used from any other method, or
> ++            // if the solveCubic implementation changes, this assumption should
> ++            // be reevaluated, and the choice of goodRoot might have to become
> ++            // goodRoot = (abs(eqn'(res[0])) > abs(eqn'(res[1]))) ? res[0] : res[1]
> ++            // where eqn' is the derivative of eqn.
> ++            double goodRoot = res[0];
> ++            double badRoot = res[1];
> ++            double x1 = intervals[0];
> ++            double x2 = intervals[1];
> ++            // If a cubic curve really has 2 roots, one of those roots must be
> ++            // at a critical point. That can't be goodRoot, so we compute x to
> ++            // be the farthest critical point from goodRoot. If there are two
> ++            // roots, x must be the second one, so we evaluate eqn at x, and if
> ++            // it is zero (or close enough) we put x in res[1] (or badRoot, if
> ++            // |solveEqn(eqn, 3, badRoot)| < |solveEqn(eqn, 3, x)| but this
> ++            // shouldn't happen often).
> ++            double x = abs(x1 - goodRoot) > abs(x2 - goodRoot) ? x1 : x2;
> ++            double fx = solveEqn(eqn, 3, x);
> ++
> ++            if (iszero(fx, 10000000*ulp(x))) {
> ++                double badRootVal = solveEqn(eqn, 3, badRoot);
> ++                res[1] = abs(badRootVal) < abs(fx) ? badRoot : x;
> ++                return 2;
> ++            }
> ++        } // else there can only be one root - goodRoot, and it is already in res[0]
> ++
> ++        return 1;
> +     }
> + 
> +-    /*
> +-     * This pruning step is necessary since solveCubic uses the
> +-     * cosine function to calculate the roots when there are 3
> +-     * of them.  Since the cosine method can have an error of
> +-     * +/- 1E-14 we need to make sure that we don't make any
> +-     * bad decisions due to an error.
> +-     *
> +-     * If the root is not near one of the endpoints, then we will
> +-     * only have a slight inaccuracy in calculating the x intercept
> +-     * which will only cause a slightly wrong answer for some
> +-     * points very close to the curve.  While the results in that
> +-     * case are not as accurate as they could be, they are not
> +-     * disastrously inaccurate either.
> +-     *
> +-     * On the other hand, if the error happens near one end of
> +-     * the curve, then our processing to reject values outside
> +-     * of the t=[0,1] range will fail and the results of that
> +-     * failure will be disastrous since for an entire horizontal
> +-     * range of test points, we will either overcount or undercount
> +-     * the crossings and get a wrong answer for all of them, even
> +-     * when they are clearly and obviously inside or outside the
> +-     * curve.
> +-     *
> +-     * To work around this problem, we try a couple of Newton-Raphson
> +-     * iterations to see if the true root is closer to the endpoint
> +-     * or further away.  If it is further away, then we can stop
> +-     * since we know we are on the right side of the endpoint.  If
> +-     * we change direction, then either we are now being dragged away
> +-     * from the endpoint in which case the first condition will cause
> +-     * us to stop, or we have passed the endpoint and are headed back.
> +-     * In the second case, we simply evaluate the slope at the
> +-     * endpoint itself and place ourselves on the appropriate side
> +-     * of it or on it depending on that result.
> +-     */
> +-    private static void fixRoots(double res[], double eqn[]) {
> +-        final double EPSILON = 1E-5;
> ++    // use newton's method.
> ++    private static double refineRootWithHint(double[] eqn, double min, double max, double t) {
> ++        if (!inInterval(t, min, max)) {
> ++            return t;
> ++        }
> ++        double[] deriv = {eqn[1], 2*eqn[2], 3*eqn[3]};
> ++        double origt = t;
> +         for (int i = 0; i < 3; i++) {
> +-            double t = res[i];
> +-            if (Math.abs(t) < EPSILON) {
> +-                res[i] = findZero(t, 0, eqn);
> +-            } else if (Math.abs(t - 1) < EPSILON) {
> +-                res[i] = findZero(t, 1, eqn);
> ++            double slope = solveEqn(deriv, 2, t);
> ++            double y = solveEqn(eqn, 3, t);
> ++            double delta = - (y / slope);
> ++            double newt = t + delta;
> ++
> ++            if (slope == 0 || y == 0 || t == newt) {
> ++                break;
> +             }
> ++
> ++            t = newt;
> ++        }
> ++        if (within(t, origt, 1000*ulp(origt)) && inInterval(t, min, max)) {
> ++            return t;
> +         }
> ++        return origt;
> ++    }
> ++
> ++    private static double bisectRootWithHint(double[] eqn, double x0, double xe, double hint) {
> ++        double delta1 = Math.min(abs(hint - x0) / 64, 0.0625);
> ++        double delta2 = Math.min(abs(hint - xe) / 64, 0.0625);
> ++        double x02 = hint - delta1;
> ++        double xe2 = hint + delta2;
> ++        double fx02 = solveEqn(eqn, 3, x02);
> ++        double fxe2 = solveEqn(eqn, 3, xe2);
> ++        while (oppositeSigns(fx02, fxe2)) {
> ++            if (x02 >= xe2) {
> ++                return x02;
> ++            }
> ++            x0 = x02;
> ++            xe = xe2;
> ++            delta1 /= 64;
> ++            delta2 /= 64;
> ++            x02 = hint - delta1;
> ++            xe2 = hint + delta2;
> ++            fx02 = solveEqn(eqn, 3, x02);
> ++            fxe2 = solveEqn(eqn, 3, xe2);
> ++        }
> ++        if (fx02 == 0) {
> ++            return x02;
> ++        }
> ++        if (fxe2 == 0) {
> ++            return xe2;
> ++        }
> ++
> ++        return bisectRoot(eqn, x0, xe);
> ++    }
> ++
> ++    private static double bisectRoot(double[] eqn, double x0, double xe) {
> ++        double fx0 = solveEqn(eqn, 3, x0);
> ++        double m = x0 + (xe - x0) / 2;
> ++        while (m != x0 && m != xe) {
> ++            double fm = solveEqn(eqn, 3, m);
> ++            if (fm == 0) {
> ++                return m;
> ++            }
> ++            if (oppositeSigns(fx0, fm)) {
> ++                xe = m;
> ++            } else {
> ++                fx0 = fm;
> ++                x0 = m;
> ++            }
> ++            m = x0 + (xe-x0)/2;
> ++        }
> ++        return m;
> ++    }
> ++
> ++    private static boolean inInterval(double t, double min, double max) {
> ++        return min <= t && t <= max;
> ++    }
> ++
> ++    private static boolean within(double x, double y, double err) {
> ++        double d = y - x;
> ++        return (d <= err && d >= -err);
> ++    }
> ++
> ++    private static boolean iszero(double x, double err) {
> ++        return within(x, 0, err);
> ++    }
> ++
> ++    private static boolean oppositeSigns(double x1, double x2) {
> ++        return (x1 < 0 && x2 > 0) || (x1 > 0 && x2 < 0);
> +     }
> + 
> +     private static double solveEqn(double eqn[], int order, double t) {
> +@@ -1182,60 +1377,26 @@
> +         return v;
> +     }
> + 
> +-    private static double findZero(double t, double target, double eqn[]) {
> +-        double slopeqn[] = {eqn[1], 2*eqn[2], 3*eqn[3]};
> +-        double slope;
> +-        double origdelta = 0;
> +-        double origt = t;
> +-        while (true) {
> +-            slope = solveEqn(slopeqn, 2, t);
> +-            if (slope == 0) {
> +-                // At a local minima - must return
> +-                return t;
> +-            }
> +-            double y = solveEqn(eqn, 3, t);
> +-            if (y == 0) {
> +-                // Found it! - return it
> +-                return t;
> +-            }
> +-            // assert(slope != 0 && y != 0);
> +-            double delta = - (y / slope);
> +-            // assert(delta != 0);
> +-            if (origdelta == 0) {
> +-                origdelta = delta;
> +-            }
> +-            if (t < target) {
> +-                if (delta < 0) return t;
> +-            } else if (t > target) {
> +-                if (delta > 0) return t;
> +-            } else { /* t == target */
> +-                return (delta > 0
> +-                        ? (target + java.lang.Double.MIN_VALUE)
> +-                        : (target - java.lang.Double.MIN_VALUE));
> +-            }
> +-            double newt = t + delta;
> +-            if (t == newt) {
> +-                // The deltas are so small that we aren't moving...
> +-                return t;
> +-            }
> +-            if (delta * origdelta < 0) {
> +-                // We have reversed our path.
> +-                int tag = (origt < t
> +-                           ? getTag(target, origt, t)
> +-                           : getTag(target, t, origt));
> +-                if (tag != INSIDE) {
> +-                    // Local minima found away from target - return the middle
> +-                    return (origt + t) / 2;
> +-                }
> +-                // Local minima somewhere near target - move to target
> +-                // and let the slope determine the resulting t.
> +-                t = target;
> +-            } else {
> +-                t = newt;
> +-            }
> +-        }
> ++    /*
> ++     * Computes M+1 where M is an upper bound for all the roots in of eqn.
> ++     * See: http://en.wikipedia.org/wiki/Sturm%27s_theorem#Applications.
> ++     * The above link doesn't contain a proof, but I [dlila] proved it myself
> ++     * so the result is reliable. The proof isn't difficult, but it's a bit
> ++     * long to include here.
> ++     * Precondition: eqn must represent a cubic polynomial
> ++     */
> ++    private static double getRootUpperBound(double[] eqn) {
> ++        double d = eqn[3];
> ++        double a = eqn[2];
> ++        double b = eqn[1];
> ++        double c = eqn[0];
> ++
> ++        double M = 1 + max(max(abs(a), abs(b)), abs(c)) / abs(d);
> ++        M += ulp(M) + 1;
> ++        return M;
> +     }
> + 
> ++
> +     /**
> +      * {@inheritDoc}
> +      * @since 1.2
> +@@ -1273,110 +1434,6 @@
> +         return contains(p.getX(), p.getY());
> +     }
> + 
> +-    /*
> +-     * Fill an array with the coefficients of the parametric equation
> +-     * in t, ready for solving against val with solveCubic.
> +-     * We currently have:
> +-     * <pre>
> +-     *   val = P(t) = C1(1-t)^3 + 3CP1 t(1-t)^2 + 3CP2 t^2(1-t) + C2 t^3
> +-     *              = C1 - 3C1t + 3C1t^2 - C1t^3 +
> +-     *                3CP1t - 6CP1t^2 + 3CP1t^3 +
> +-     *                3CP2t^2 - 3CP2t^3 +
> +-     *                C2t^3
> +-     *            0 = (C1 - val) +
> +-     *                (3CP1 - 3C1) t +
> +-     *                (3C1 - 6CP1 + 3CP2) t^2 +
> +-     *                (C2 - 3CP2 + 3CP1 - C1) t^3
> +-     *            0 = C + Bt + At^2 + Dt^3
> +-     *     C = C1 - val
> +-     *     B = 3*CP1 - 3*C1
> +-     *     A = 3*CP2 - 6*CP1 + 3*C1
> +-     *     D = C2 - 3*CP2 + 3*CP1 - C1
> +-     * </pre>
> +-     */
> +-    private static void fillEqn(double eqn[], double val,
> +-                                double c1, double cp1, double cp2, double c2) {
> +-        eqn[0] = c1 - val;
> +-        eqn[1] = (cp1 - c1) * 3.0;
> +-        eqn[2] = (cp2 - cp1 - cp1 + c1) * 3.0;
> +-        eqn[3] = c2 + (cp1 - cp2) * 3.0 - c1;
> +-        return;
> +-    }
> +-
> +-    /*
> +-     * Evaluate the t values in the first num slots of the vals[] array
> +-     * and place the evaluated values back into the same array.  Only
> +-     * evaluate t values that are within the range <0, 1>, including
> +-     * the 0 and 1 ends of the range iff the include0 or include1
> +-     * booleans are true.  If an "inflection" equation is handed in,
> +-     * then any points which represent a point of inflection for that
> +-     * cubic equation are also ignored.
> +-     */
> +-    private static int evalCubic(double vals[], int num,
> +-                                 boolean include0,
> +-                                 boolean include1,
> +-                                 double inflect[],
> +-                                 double c1, double cp1,
> +-                                 double cp2, double c2) {
> +-        int j = 0;
> +-        for (int i = 0; i < num; i++) {
> +-            double t = vals[i];
> +-            if ((include0 ? t >= 0 : t > 0) &&
> +-                (include1 ? t <= 1 : t < 1) &&
> +-                (inflect == null ||
> +-                 inflect[1] + (2*inflect[2] + 3*inflect[3]*t)*t != 0))
> +-            {
> +-                double u = 1 - t;
> +-                vals[j++] = c1*u*u*u + 3*cp1*t*u*u + 3*cp2*t*t*u + c2*t*t*t;
> +-            }
> +-        }
> +-        return j;
> +-    }
> +-
> +-    private static final int BELOW = -2;
> +-    private static final int LOWEDGE = -1;
> +-    private static final int INSIDE = 0;
> +-    private static final int HIGHEDGE = 1;
> +-    private static final int ABOVE = 2;
> +-
> +-    /*
> +-     * Determine where coord lies with respect to the range from
> +-     * low to high.  It is assumed that low <= high.  The return
> +-     * value is one of the 5 values BELOW, LOWEDGE, INSIDE, HIGHEDGE,
> +-     * or ABOVE.
> +-     */
> +-    private static int getTag(double coord, double low, double high) {
> +-        if (coord <= low) {
> +-            return (coord < low ? BELOW : LOWEDGE);
> +-        }
> +-        if (coord >= high) {
> +-            return (coord > high ? ABOVE : HIGHEDGE);
> +-        }
> +-        return INSIDE;
> +-    }
> +-
> +-    /*
> +-     * Determine if the pttag represents a coordinate that is already
> +-     * in its test range, or is on the border with either of the two
> +-     * opttags representing another coordinate that is "towards the
> +-     * inside" of that test range.  In other words, are either of the
> +-     * two "opt" points "drawing the pt inward"?
> +-     */
> +-    private static boolean inwards(int pttag, int opt1tag, int opt2tag) {
> +-        switch (pttag) {
> +-        case BELOW:
> +-        case ABOVE:
> +-        default:
> +-            return false;
> +-        case LOWEDGE:
> +-            return (opt1tag >= INSIDE || opt2tag >= INSIDE);
> +-        case INSIDE:
> +-            return true;
> +-        case HIGHEDGE:
> +-            return (opt1tag <= INSIDE || opt2tag <= INSIDE);
> +-        }
> +-    }
> +-
> +     /**
> +      * {@inheritDoc}
> +      * @since 1.2
> +diff -Nr --unified=3 ./openjdk.old/jdk/test/java/awt/geom/CubicCurve2D/ContainsTest.java ./openjdk/jdk/test/java/awt/geom/CubicCurve2D/ContainsTest.java
> +--- ./openjdk.old/jdk/test/java/awt/geom/CubicCurve2D/ContainsTest.java	1969-12-31 19:00:00.000000000 -0500
> ++++ ./openjdk/jdk/test/java/awt/geom/CubicCurve2D/ContainsTest.java	2011-02-01 10:54:07.105148995 -0500
> +@@ -0,0 +1,46 @@
> ++/*
> ++ * Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
> ++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> ++ *
> ++ * This code is free software; you can redistribute it and/or modify it
> ++ * under the terms of the GNU General Public License version 2 only, as
> ++ * published by the Free Software Foundation.
> ++ *
> ++ * This code is distributed in the hope that it will be useful, but WITHOUT
> ++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> ++ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
> ++ * version 2 for more details (a copy is included in the LICENSE file that
> ++ * accompanied this code).
> ++ *
> ++ * You should have received a copy of the GNU General Public License version
> ++ * 2 along with this work; if not, write to the Free Software Foundation,
> ++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
> ++ *
> ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
> ++ * or visit www.oracle.com if you need additional information or have any
> ++ * questions.
> ++ */
> ++
> ++/**
> ++ * @test
> ++ * @bug 4724552
> ++ * @summary Verifies that CubicCurve2D.contains(Rectangle2D) does not return
> ++ *          true when the rectangle is only partially contained.
> ++ * @run main ContainsTest
> ++ */
> ++
> ++
> ++import java.awt.geom.CubicCurve2D;
> ++import java.awt.geom.Rectangle2D;
> ++
> ++public class ContainsTest {
> ++
> ++    public static void main(String[] args) throws Exception {
> ++        CubicCurve2D c = new CubicCurve2D.Double(0, 0, 4, -4, -2, -4, 2, 0);
> ++        Rectangle2D r = new Rectangle2D.Double(0.75, -2.5, 0.5, 2);
> ++
> ++        if (c.contains(r)) {
> ++            throw new Exception("The rectangle should not be contained in the curve");
> ++        }
> ++    }
> ++}
> +diff -Nr --unified=3 ./openjdk.old/jdk/test/java/awt/geom/CubicCurve2D/IntersectsTest.java ./openjdk/jdk/test/java/awt/geom/CubicCurve2D/IntersectsTest.java
> +--- ./openjdk.old/jdk/test/java/awt/geom/CubicCurve2D/IntersectsTest.java	1969-12-31 19:00:00.000000000 -0500
> ++++ ./openjdk/jdk/test/java/awt/geom/CubicCurve2D/IntersectsTest.java	2011-02-01 10:54:07.105148995 -0500
> +@@ -0,0 +1,48 @@
> ++/*
> ++ * Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
> ++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> ++ *
> ++ * This code is free software; you can redistribute it and/or modify it
> ++ * under the terms of the GNU General Public License version 2 only, as
> ++ * published by the Free Software Foundation.
> ++ *
> ++ * This code is distributed in the hope that it will be useful, but WITHOUT
> ++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> ++ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
> ++ * version 2 for more details (a copy is included in the LICENSE file that
> ++ * accompanied this code).
> ++ *
> ++ * You should have received a copy of the GNU General Public License version
> ++ * 2 along with this work; if not, write to the Free Software Foundation,
> ++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
> ++ *
> ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
> ++ * or visit www.oracle.com if you need additional information or have any
> ++ * questions.
> ++ */
> ++
> ++/**
> ++ * @test
> ++ * @bug 4493128
> ++ * @summary Verifies that CubicCurve2D returns true for obvious intersection
> ++ * @run main IntersectsTest
> ++ */
> ++
> ++import java.awt.geom.CubicCurve2D;
> ++import java.awt.geom.Rectangle2D;
> ++
> ++public class IntersectsTest {
> ++
> ++    public static void main(String[] args) throws Exception {
> ++        CubicCurve2D c = new CubicCurve2D.Double(50.0, 300.0,
> ++                                                 150.0, 166.6666717529297,
> ++                                                 238.0, 456.66668701171875,
> ++                                                 350.0, 300.0);
> ++        Rectangle2D r = new Rectangle2D.Double(260, 300, 10, 10);
> ++
> ++        if (!c.intersects(r)) {
> ++            throw new Exception("The rectangle is contained. " +
> ++                                "intersects(Rectangle2D) should return true");
> ++        }
> ++    }
> ++}
> +diff -Nr --unified=3 ./openjdk.old/jdk/test/java/awt/geom/CubicCurve2D/SolveCubicTest.java ./openjdk/jdk/test/java/awt/geom/CubicCurve2D/SolveCubicTest.java
> +--- ./openjdk.old/jdk/test/java/awt/geom/CubicCurve2D/SolveCubicTest.java	1969-12-31 19:00:00.000000000 -0500
> ++++ ./openjdk/jdk/test/java/awt/geom/CubicCurve2D/SolveCubicTest.java	2011-02-01 10:54:07.105148995 -0500
> +@@ -0,0 +1,43 @@
> ++/*
> ++ * Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
> ++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> ++ *
> ++ * This code is free software; you can redistribute it and/or modify it
> ++ * under the terms of the GNU General Public License version 2 only, as
> ++ * published by the Free Software Foundation.
> ++ *
> ++ * This code is distributed in the hope that it will be useful, but WITHOUT
> ++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> ++ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
> ++ * version 2 for more details (a copy is included in the LICENSE file that
> ++ * accompanied this code).
> ++ *
> ++ * You should have received a copy of the GNU General Public License version
> ++ * 2 along with this work; if not, write to the Free Software Foundation,
> ++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
> ++ *
> ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
> ++ * or visit www.oracle.com if you need additional information or have any
> ++ * questions.
> ++ */
> ++
> ++/**
> ++ * @test
> ++ * @bug 4645692
> ++ * @summary Verifies that SolveCubic doesn't miss any roots.
> ++ * @run main SolveCubicTest
> ++ */
> ++
> ++import static java.awt.geom.CubicCurve2D.solveCubic;
> ++
> ++public class SolveCubicTest {
> ++
> ++    public static void main(String[] args) throws Exception {
> ++
> ++        double[] eqn = {0, 0, 1, 1};
> ++        int numRoots = solveCubic(eqn, eqn);
> ++        if (numRoots < 2) {
> ++            throw new Exception("There are 2 roots. Only " + numRoots + " were found.");
> ++        }
> ++    }
> ++}
> diff -r 0c86bdc188d3 patches/openjdk/4724552-CubicCurve2D.patch
> --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
> +++ b/patches/openjdk/4724552-CubicCurve2D.patch	Tue Feb 01 11:40:06 2011 -0500
> @@ -0,0 +1,48 @@
> +--- openjdk/jdk/src/share/classes/java/awt/geom/CubicCurve2D.java.old	2011-01-20 18:54:14.000000000 -0500
> ++++ openjdk/jdk/src/share/classes/java/awt/geom/CubicCurve2D.java	2011-01-31 12:38:24.340733697 -0500
> +@@ -1602,20 +1602,32 @@
> +         if (w <= 0 || h <= 0) {
> +             return false;
> +         }
> +-        // Assertion: Cubic curves closed by connecting their
> +-        // endpoints form either one or two convex halves with
> +-        // the closing line segment as an edge of both sides.
> +-        if (!(contains(x, y) &&
> +-              contains(x + w, y) &&
> +-              contains(x + w, y + h) &&
> +-              contains(x, y + h))) {
> +-            return false;
> ++
> ++        int numCrossings = rectCrossings(x, y, w, h);
> ++        return !(numCrossings == 0 || numCrossings == Curve.RECT_INTERSECTS);
> ++    }
> ++
> ++    private int rectCrossings(double x, double y, double w, double h) {
> ++        int crossings = 0;
> ++        if (!(getX1() == getX2() && getY1() == getY2())) {
> ++            crossings = Curve.rectCrossingsForLine(crossings,
> ++                                                   x, y,
> ++                                                   x+w, y+h,
> ++                                                   getX1(), getY1(),
> ++                                                   getX2(), getY2());
> ++            if (crossings == Curve.RECT_INTERSECTS) {
> ++                return crossings;
> ++            }
> +         }
> +-        // Either the rectangle is entirely inside one of the convex
> +-        // halves or it crosses from one to the other, in which case
> +-        // it must intersect the closing line segment.
> +-        Rectangle2D rect = new Rectangle2D.Double(x, y, w, h);
> +-        return !rect.intersectsLine(getX1(), getY1(), getX2(), getY2());
> ++        // we call this with the curve's direction reversed, because we wanted
> ++        // to call rectCrossingsForLine first, because it's cheaper.
> ++        return Curve.rectCrossingsForCubic(crossings,
> ++                                           x, y,
> ++                                           x+w, y+h,
> ++                                           getX2(), getY2(),
> ++                                           getCtrlX2(), getCtrlY2(),
> ++                                           getCtrlX1(), getCtrlY1(),
> ++                                           getX1(), getY1(), 0);
> +     }
> + 
> +     /**


-- 
Andrew :)

Free Java Software Engineer
Red Hat, Inc. (http://www.redhat.com)

Support Free Java!
Contribute to GNU Classpath and IcedTea
http://www.gnu.org/software/classpath
http://icedtea.classpath.org
PGP Key: 94EFD9D8 (http://subkeys.pgp.net)
Fingerprint = F8EF F1EA 401E 2E60 15FA  7927 142C 2591 94EF D9D8



More information about the distro-pkg-dev mailing list