reviewer needed: rendering performance backport.
Andrew John Hughes
ahughes at redhat.com
Sat Feb 5 01:12:57 PST 2011
On Fri, Feb 04, 2011 at 11:50:39AM -0500, Denis Lila wrote:
> Hello.
>
> I would like to "backport" my rendering performance changeset from
> openjdk7. I say "backport" because it has been approved for pushing
> but we're still ironing out some regression test issues (which don't
> affect icedtea because the tests in question are already in icedtea6):
> http://mail.openjdk.java.net/pipermail/2d-dev/2011-February/001841.html
>
> The webrev with all the changes is this:
> http://icedtea.classpath.org/~dlila/webrevs/perfWebrev/webrev/
>
> Besides, a straightforward backport would be impossible because the
> openjdk7 changeset depends on another changeset that hasn't been
> backported yet.
>
Hmm, so what was changed from the 7 version? And which changeset does this depend on?
Could we not backport that first?
> ChangeLog:
> +2011-02-04 Denis Lila <dlila at redhat.com>
> +
> + * NEWS: Updated with the backport
> + * Makefile.am (ICEDTEA_PATCHES): Added the patch
> + * patches/openjdk/7016856-renderer-perf.patch: New file.
> +
>
> Thank you,
> Denis.
> diff -r d4bc091312e0 ChangeLog
> --- a/ChangeLog Thu Feb 03 23:55:59 2011 +0100
> +++ b/ChangeLog Fri Feb 04 11:45:09 2011 -0500
> @@ -1,3 +1,9 @@
> +2011-02-04 Denis Lila <dlila at redhat.com>
> +
> + * NEWS: Updated with the backport
> + * Makefile.am (ICEDTEA_PATCHES): Added the patch
> + * patches/openjdk/7016856-renderer-perf.patch: New file.
> +
> 2011-02-03 Andrew John Hughes <ahughes at redhat.com>
>
> PR616, PR99:
> diff -r d4bc091312e0 Makefile.am
> --- a/Makefile.am Thu Feb 03 23:55:59 2011 +0100
> +++ b/Makefile.am Fri Feb 04 11:45:09 2011 -0500
> @@ -280,7 +280,8 @@
> patches/openjdk/4724552-CubicCurve2D.patch \
> patches/openjdk/4493128-CubicCurve2D.patch \
> patches/openjdk/4645692-CubicCurve2D.solveCubic.patch \
> - patches/no-static-linking.patch
> + patches/no-static-linking.patch \
> + patches/openjdk/7016856-renderer-perf.patch
>
> if !WITH_ALT_HSBUILD
> ICEDTEA_PATCHES += \
> diff -r d4bc091312e0 NEWS
> --- a/NEWS Thu Feb 03 23:55:59 2011 +0100
> +++ b/NEWS Fri Feb 04 11:45:09 2011 -0500
> @@ -406,6 +406,7 @@
> - S4493128: CubicCurve2D intersects method fails
> - S4724552: CubicCurve2D.contains(Rectangle2D) returns true when partially contained.
> - S4645692: CubicCurve2D.solveCubic does not return all solutions.
> + - S7016856: Renderer performance improvement and dashing performance regression fix.
> * Bug fixes
> - RH661505: JPEGs with sRGB IEC61966-2.1 color profiles have wrong colors
> - PR616, PR99: Don't statically link libstdc++ or libgcc
> diff -r d4bc091312e0 patches/openjdk/7016856-renderer-perf.patch
> --- /dev/null Thu Jan 01 00:00:00 1970 +0000
> +++ b/patches/openjdk/7016856-renderer-perf.patch Fri Feb 04 11:45:09 2011 -0500
> @@ -0,0 +1,2266 @@
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Curve.java ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Curve.java
> +--- ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Curve.java 2011-02-04 11:09:54.297266131 -0500
> ++++ ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Curve.java 2011-02-04 11:12:18.038769405 -0500
> +@@ -1,5 +1,5 @@
> + /*
> +- * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
> ++ * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
> + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> + *
> + * This code is free software; you can redistribute it and/or modify it
> +@@ -27,7 +27,7 @@
> +
> + import java.util.Iterator;
> +
> +-class Curve {
> ++final class Curve {
> +
> + float ax, ay, bx, by, cx, cy, dx, dy;
> + float dax, day, dbx, dby;
> +@@ -101,14 +101,6 @@
> + return t * (t * day + dby) + cy;
> + }
> +
> +- private float ddxat(float t) {
> +- return 2 * dax * t + dbx;
> +- }
> +-
> +- private float ddyat(float t) {
> +- return 2 * day * t + dby;
> +- }
> +-
> + int dxRoots(float[] roots, int off) {
> + return Helpers.quadraticRoots(dax, dbx, cx, roots, off);
> + }
> +@@ -131,17 +123,17 @@
> + // finds points where the first and second derivative are
> + // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
> + // * is a dot product). Unfortunately, we have to solve a cubic.
> +- private int perpendiculardfddf(float[] pts, int off, final float err) {
> ++ private int perpendiculardfddf(float[] pts, int off) {
> + assert pts.length >= off + 4;
> +
> +- // these are the coefficients of g(t):
> ++ // these are the coefficients of some multiple of g(t) (not g(t),
> ++ // because the roots of a polynomial are not changed after multiplication
> ++ // by a constant, and this way we save a few multiplications).
> + final float a = 2*(dax*dax + day*day);
> + final float b = 3*(dax*dbx + day*dby);
> + final float c = 2*(dax*cx + day*cy) + dbx*dbx + dby*dby;
> + final float d = dbx*cx + dby*cy;
> +- // TODO: We might want to divide the polynomial by a to make the
> +- // coefficients smaller. This won't change the roots.
> +- return Helpers.cubicRootsInAB(a, b, c, d, pts, off, err, 0f, 1f);
> ++ return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f);
> + }
> +
> + // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
> +@@ -161,7 +153,7 @@
> + // no OOB exception, because by now off<=6, and roots.length >= 10
> + assert off <= 6 && roots.length >= 10;
> + int ret = off;
> +- int numPerpdfddf = perpendiculardfddf(roots, off, err);
> ++ int numPerpdfddf = perpendiculardfddf(roots, off);
> + float t0 = 0, ft0 = ROCsq(t0) - w*w;
> + roots[off + numPerpdfddf] = 1f; // always check interval end points
> + numPerpdfddf++;
> +@@ -189,8 +181,9 @@
> + // A slight modification of the false position algorithm on wikipedia.
> + // This only works for the ROCsq-x functions. It might be nice to have
> + // the function as an argument, but that would be awkward in java6.
> +- // It is something to consider for java7, depending on how closures
> +- // and function objects turn out. Same goes for the newton's method
> ++ // TODO: It is something to consider for java8 (or whenever lambda
> ++ // expressions make it into the language), depending on how closures
> ++ // and turn out. Same goes for the newton's method
> + // algorithm in Helpers.java
> + private float falsePositionROCsqMinusX(float x0, float x1,
> + final float x, final float err)
> +@@ -203,7 +196,7 @@
> + for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
> + r = (fs * t - ft * s) / (fs - ft);
> + fr = ROCsq(r) - x;
> +- if (fr * ft > 0) {// have the same sign
> ++ if (sameSign(fr, ft)) {
> + ft = fr; t = r;
> + if (side < 0) {
> + fs /= (1 << (-side));
> +@@ -226,55 +219,65 @@
> + return r;
> + }
> +
> ++ private static boolean sameSign(double x, double y) {
> ++ // another way is to test if x*y > 0. This is bad for small x, y.
> ++ return (x < 0 && y < 0) || (x > 0 && y > 0);
> ++ }
> ++
> + // returns the radius of curvature squared at t of this curve
> + // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
> + private float ROCsq(final float t) {
> +- final float dx = dxat(t);
> +- final float dy = dyat(t);
> +- final float ddx = ddxat(t);
> +- final float ddy = ddyat(t);
> ++ // dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency
> ++ final float dx = t * (t * dax + dbx) + cx;
> ++ final float dy = t * (t * day + dby) + cy;
> ++ final float ddx = 2 * dax * t + dbx;
> ++ final float ddy = 2 * day * t + dby;
> + final float dx2dy2 = dx*dx + dy*dy;
> + final float ddx2ddy2 = ddx*ddx + ddy*ddy;
> + final float ddxdxddydy = ddx*dx + ddy*dy;
> +- float ret = ((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy))*dx2dy2;
> +- return ret;
> ++ return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));
> + }
> +
> +- // curve to be broken should be in pts[0]
> +- // this will change the contents of both pts and Ts
> ++ // curve to be broken should be in pts
> ++ // this will change the contents of pts but not Ts
> + // TODO: There's no reason for Ts to be an array. All we need is a sequence
> + // of t values at which to subdivide. An array statisfies this condition,
> + // but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.
> + // Doing this will also make dashing easier, since we could easily make
> + // LengthIterator an Iterator<Float> and feed it to this function to simplify
> + // the loop in Dasher.somethingTo.
> +- static Iterator<float[]> breakPtsAtTs(final float[][] pts, final int type,
> ++ static Iterator<Integer> breakPtsAtTs(final float[] pts, final int type,
> + final float[] Ts, final int numTs)
> + {
> +- assert pts.length >= 2 && pts[0].length >= 8 && numTs <= Ts.length;
> +- return new Iterator<float[]>() {
> +- int nextIdx = 0;
> ++ assert pts.length >= 2*type && numTs <= Ts.length;
> ++ return new Iterator<Integer>() {
> ++ // these prevent object creation and destruction during autoboxing.
> ++ // Because of this, the compiler should be able to completely
> ++ // eliminate the boxing costs.
> ++ final Integer i0 = 0;
> ++ final Integer itype = type;
> + int nextCurveIdx = 0;
> ++ Integer curCurveOff = i0;
> + float prevT = 0;
> +
> + public boolean hasNext() {
> + return nextCurveIdx < numTs + 1;
> + }
> +
> +- public float[] next() {
> +- float[] ret;
> ++ public Integer next() {
> ++ Integer ret;
> + if (nextCurveIdx < numTs) {
> + float curT = Ts[nextCurveIdx];
> + float splitT = (curT - prevT) / (1 - prevT);
> + Helpers.subdivideAt(splitT,
> +- pts[nextIdx], 0,
> +- pts[nextIdx], 0,
> +- pts[1-nextIdx], 0, type);
> +- updateTs(Ts, Ts[nextCurveIdx], nextCurveIdx + 1, numTs - nextCurveIdx - 1);
> +- ret = pts[nextIdx];
> +- nextIdx = 1 - nextIdx;
> ++ pts, curCurveOff,
> ++ pts, 0,
> ++ pts, type, type);
> ++ prevT = curT;
> ++ ret = i0;
> ++ curCurveOff = itype;
> + } else {
> +- ret = pts[nextIdx];
> ++ ret = curCurveOff;
> + }
> + nextCurveIdx++;
> + return ret;
> +@@ -283,12 +286,5 @@
> + public void remove() {}
> + };
> + }
> +-
> +- // precondition: ts[off]...ts[off+len-1] must all be greater than t.
> +- private static void updateTs(float[] ts, final float t, final int off, final int len) {
> +- for (int i = off; i < off + len; i++) {
> +- ts[i] = (ts[i] - t) / (1 - t);
> +- }
> +- }
> + }
> +
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Dasher.java ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Dasher.java
> +--- ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Dasher.java 2011-02-04 11:09:54.298266201 -0500
> ++++ ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Dasher.java 2011-02-04 11:12:26.902822611 -0500
> +@@ -1,5 +1,5 @@
> + /*
> +- * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
> ++ * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
> + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> + *
> + * This code is free software; you can redistribute it and/or modify it
> +@@ -38,7 +38,7 @@
> + * semantics are unclear.
> + *
> + */
> +-public class Dasher implements sun.awt.geom.PathConsumer2D {
> ++final class Dasher implements sun.awt.geom.PathConsumer2D {
> +
> + private final PathConsumer2D out;
> + private final float[] dash;
> +@@ -169,7 +169,7 @@
> + float dx = x1 - x0;
> + float dy = y1 - y0;
> +
> +- float len = (float) Math.hypot(dx, dy);
> ++ float len = (float) Math.sqrt(dx*dx + dy*dy);
> +
> + if (len == 0) {
> + return;
> +@@ -226,7 +226,7 @@
> + return;
> + }
> + if (li == null) {
> +- li = new LengthIterator(4, 0.0001f);
> ++ li = new LengthIterator(4, 0.01f);
> + }
> + li.initializeIterationOnCurve(curCurvepts, type);
> +
> +@@ -237,9 +237,9 @@
> + while ((t = li.next(leftInThisDashSegment)) < 1) {
> + if (t != 0) {
> + Helpers.subdivideAt((t - lastSplitT) / (1 - lastSplitT),
> +- curCurvepts, curCurveoff,
> +- curCurvepts, 0,
> +- curCurvepts, type, type);
> ++ curCurvepts, curCurveoff,
> ++ curCurvepts, 0,
> ++ curCurvepts, type, type);
> + lastSplitT = t;
> + goTo(curCurvepts, 2, type);
> + curCurveoff = type;
> +@@ -307,6 +307,11 @@
> + private int recLevel;
> + private boolean done;
> +
> ++ // the lengths of the lines of the control polygon. Only its first
> ++ // curveType/2 - 1 elements are valid. This is an optimization. See
> ++ // next(float) for more detail.
> ++ private float[] curLeafCtrlPolyLengths = new float[3];
> ++
> + public LengthIterator(int reclimit, float err) {
> + this.limit = reclimit;
> + this.minTincrement = 1f / (1 << limit);
> +@@ -344,11 +349,52 @@
> + this.lastSegLen = 0;
> + }
> +
> ++ // 0 == false, 1 == true, -1 == invalid cached value.
> ++ private int cachedHaveLowAcceleration = -1;
> ++
> ++ private boolean haveLowAcceleration(float err) {
> ++ if (cachedHaveLowAcceleration == -1) {
> ++ final float len1 = curLeafCtrlPolyLengths[0];
> ++ final float len2 = curLeafCtrlPolyLengths[1];
> ++ // the test below is equivalent to !within(len1/len2, 1, err).
> ++ // It is using a multiplication instead of a division, so it
> ++ // should be a bit faster.
> ++ if (!Helpers.within(len1, len2, err*len2)) {
> ++ cachedHaveLowAcceleration = 0;
> ++ return false;
> ++ }
> ++ if (curveType == 8) {
> ++ final float len3 = curLeafCtrlPolyLengths[2];
> ++ // if len1 is close to 2 and 2 is close to 3, that probably
> ++ // means 1 is close to 3 so the second part of this test might
> ++ // not be needed, but it doesn't hurt to include it.
> ++ if (!(Helpers.within(len2, len3, err*len3) &&
> ++ Helpers.within(len1, len3, err*len3))) {
> ++ cachedHaveLowAcceleration = 0;
> ++ return false;
> ++ }
> ++ }
> ++ cachedHaveLowAcceleration = 1;
> ++ return true;
> ++ }
> ++
> ++ return (cachedHaveLowAcceleration == 1);
> ++ }
> ++
> ++ // we want to avoid allocations/gc so we keep this array so we
> ++ // can put roots in it,
> ++ private float[] nextRoots = new float[4];
> ++
> ++ // caches the coefficients of the current leaf in its flattened
> ++ // form (see inside next() for what that means). The cache is
> ++ // invalid when it's third element is negative, since in any
> ++ // valid flattened curve, this would be >= 0.
> ++ private float[] flatLeafCoefCache = new float[] {0, 0, -1, 0};
> + // returns the t value where the remaining curve should be split in
> + // order for the left subdivided curve to have length len. If len
> + // is >= than the length of the uniterated curve, it returns 1.
> +- public float next(float len) {
> +- float targetLength = lenAtLastSplit + len;
> ++ public float next(final float len) {
> ++ final float targetLength = lenAtLastSplit + len;
> + while(lenAtNextT < targetLength) {
> + if (done) {
> + lastSegLen = lenAtNextT - lenAtLastSplit;
> +@@ -357,8 +403,46 @@
> + goToNextLeaf();
> + }
> + lenAtLastSplit = targetLength;
> +- float t = binSearchForLen(lenAtLastSplit - lenAtLastT,
> +- recCurveStack[recLevel], curveType, lenAtNextT - lenAtLastT, ERR);
> ++ final float leaflen = lenAtNextT - lenAtLastT;
> ++ float t = (targetLength - lenAtLastT) / leaflen;
> ++
> ++ // cubicRootsInAB is a fairly expensive call, so we just don't do it
> ++ // if the acceleration in this section of the curve is small enough.
> ++ if (!haveLowAcceleration(0.05f)) {
> ++ // We flatten the current leaf along the x axis, so that we're
> ++ // left with a, b, c which define a 1D Bezier curve. We then
> ++ // solve this to get the parameter of the original leaf that
> ++ // gives us the desired length.
> ++
> ++ if (flatLeafCoefCache[2] < 0) {
> ++ float x = 0+curLeafCtrlPolyLengths[0],
> ++ y = x+curLeafCtrlPolyLengths[1];
> ++ if (curveType == 8) {
> ++ float z = y + curLeafCtrlPolyLengths[2];
> ++ flatLeafCoefCache[0] = 3*(x - y) + z;
> ++ flatLeafCoefCache[1] = 3*(y - 2*x);
> ++ flatLeafCoefCache[2] = 3*x;
> ++ flatLeafCoefCache[3] = -z;
> ++ } else if (curveType == 6) {
> ++ flatLeafCoefCache[0] = 0f;
> ++ flatLeafCoefCache[1] = y - 2*x;
> ++ flatLeafCoefCache[2] = 2*x;
> ++ flatLeafCoefCache[3] = -y;
> ++ }
> ++ }
> ++ float a = flatLeafCoefCache[0];
> ++ float b = flatLeafCoefCache[1];
> ++ float c = flatLeafCoefCache[2];
> ++ float d = t*flatLeafCoefCache[3];
> ++
> ++ // we use cubicRootsInAB here, because we want only roots in 0, 1,
> ++ // and our quadratic root finder doesn't filter, so it's just a
> ++ // matter of convenience.
> ++ int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1);
> ++ if (n == 1 && !Float.isNaN(nextRoots[0])) {
> ++ t = nextRoots[0];
> ++ }
> ++ }
> + // t is relative to the current leaf, so we must make it a valid parameter
> + // of the original curve.
> + t = t * (nextT - lastT) + lastT;
> +@@ -379,36 +463,6 @@
> + return lastSegLen;
> + }
> +
> +- // Returns t such that if leaf is subdivided at t the left
> +- // curve will have length len. leafLen must be the length of leaf.
> +- private static Curve bsc = new Curve();
> +- private static float binSearchForLen(float len, float[] leaf, int type,
> +- float leafLen, float err)
> +- {
> +- assert len <= leafLen;
> +- bsc.set(leaf, type);
> +- float errBound = err*len;
> +- float left = 0, right = 1;
> +- while (left < right) {
> +- float m = (left + right) / 2;
> +- if (m == left || m == right) {
> +- return m;
> +- }
> +- float x = bsc.xat(m);
> +- float y = bsc.yat(m);
> +- float leftLen = Helpers.linelen(leaf[0], leaf[1], x, y);
> +- if (Math.abs(leftLen - len) < errBound) {
> +- return m;
> +- }
> +- if (leftLen < len) {
> +- left = m;
> +- } else {
> +- right = m;
> +- }
> +- }
> +- return left;
> +- }
> +-
> + // go to the next leaf (in an inorder traversal) in the recursion tree
> + // preconditions: must be on a leaf, and that leaf must not be the root.
> + private void goToNextLeaf() {
> +@@ -437,6 +491,9 @@
> + lenAtLastT = lenAtNextT;
> + nextT += (1 << (limit - recLevel)) * minTincrement;
> + lenAtNextT += len;
> ++ // invalidate caches
> ++ flatLeafCoefCache[2] = -1;
> ++ cachedHaveLowAcceleration = -1;
> + } else {
> + Helpers.subdivide(recCurveStack[recLevel], 0,
> + recCurveStack[recLevel+1], 0,
> +@@ -450,15 +507,27 @@
> + // this is a bit of a hack. It returns -1 if we're not on a leaf, and
> + // the length of the leaf if we are on a leaf.
> + private float onLeaf() {
> +- float polylen = Helpers.polyLineLength(recCurveStack[recLevel], 0, curveType);
> +- float linelen = Helpers.linelen(recCurveStack[recLevel][0], recCurveStack[recLevel][1],
> +- recCurveStack[recLevel][curveType - 2], recCurveStack[recLevel][curveType - 1]);
> +- return (polylen - linelen < ERR || recLevel == limit) ?
> +- (polylen + linelen)/2 : -1;
> ++ float[] curve = recCurveStack[recLevel];
> ++ float polyLen = 0;
> ++
> ++ float x0 = curve[0], y0 = curve[1];
> ++ for (int i = 2; i < curveType; i += 2) {
> ++ final float x1 = curve[i], y1 = curve[i+1];
> ++ final float len = Helpers.linelen(x0, y0, x1, y1);
> ++ polyLen += len;
> ++ curLeafCtrlPolyLengths[i/2 - 1] = len;
> ++ x0 = x1;
> ++ y0 = y1;
> ++ }
> ++
> ++ final float lineLen = Helpers.linelen(curve[0], curve[1], curve[curveType-2], curve[curveType-1]);
> ++ if (polyLen - lineLen < ERR || recLevel == limit) {
> ++ return (polyLen + lineLen)/2;
> ++ }
> ++ return -1;
> + }
> + }
> +
> +-
> + public void curveTo(float x1, float y1,
> + float x2, float y2,
> + float x3, float y3)
> +@@ -470,7 +539,6 @@
> + somethingTo(8);
> + }
> +
> +-
> + public void quadTo(float x1, float y1, float x2, float y2) {
> + curCurvepts[0] = x0; curCurvepts[1] = y0;
> + curCurvepts[2] = x1; curCurvepts[3] = y1;
> +@@ -497,7 +565,6 @@
> + out.pathDone();
> + }
> +
> +-
> + public long getNativeConsumer() {
> + throw new InternalError("Dasher does not use a native consumer");
> + }
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Helpers.java ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Helpers.java
> +--- ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Helpers.java 2011-02-04 11:09:54.298266201 -0500
> ++++ ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Helpers.java 2011-02-04 11:10:55.052142852 -0500
> +@@ -1,5 +1,5 @@
> + /*
> +- * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
> ++ * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
> + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> + *
> + * This code is free software; you can redistribute it and/or modify it
> +@@ -26,6 +26,12 @@
> + package sun.java2d.pisces;
> +
> + import java.util.Arrays;
> ++import static java.lang.Math.PI;
> ++import static java.lang.Math.cos;
> ++import static java.lang.Math.sqrt;
> ++import static java.lang.Math.cbrt;
> ++import static java.lang.Math.acos;
> ++
> +
> + final class Helpers {
> + private Helpers() {
> +@@ -75,100 +81,74 @@
> + return ret - off;
> + }
> +
> +- // find the roots of g(t) = a*t^3 + b*t^2 + c*t + d in [A,B)
> +- // We will not use Cardano's method, since it is complicated and
> +- // involves too many square and cubic roots. We will use Newton's method.
> +- // TODO: this should probably return ALL roots. Then the user can do
> +- // his own filtering of roots outside [A,B).
> +- static int cubicRootsInAB(final float a, final float b,
> +- final float c, final float d,
> +- float[] pts, final int off, final float E,
> ++ // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
> ++ static int cubicRootsInAB(float d, float a, float b, float c,
> ++ float[] pts, final int off,
> + final float A, final float B)
> + {
> +- if (a == 0) {
> +- return quadraticRoots(b, c, d, pts, off);
> +- }
> +- // the coefficients of g'(t). no dc variable because dc=c
> +- // we use these to get the critical points of g(t), which
> +- // we then use to chose starting points for Newton's method. These
> +- // should be very close to the actual roots.
> +- final float da = 3 * a;
> +- final float db = 2 * b;
> +- int numCritPts = quadraticRoots(da, db, c, pts, off+1);
> +- numCritPts = filterOutNotInAB(pts, off+1, numCritPts, A, B) - off - 1;
> +- // need them sorted.
> +- if (numCritPts == 2 && pts[off+1] > pts[off+2]) {
> +- float tmp = pts[off+1];
> +- pts[off+1] = pts[off+2];
> +- pts[off+2] = tmp;
> +- }
> +-
> +- int ret = off;
> +-
> +- // we don't actually care much about the extrema themselves. We
> +- // only use them to ensure that g(t) is monotonic in each
> +- // interval [pts[i],pts[i+1] (for i in off...off+numCritPts+1).
> +- // This will allow us to determine intervals containing exactly
> +- // one root.
> +- // The end points of the interval are always local extrema.
> +- pts[off] = A;
> +- pts[off + numCritPts + 1] = B;
> +- numCritPts += 2;
> +-
> +- float x0 = pts[off], fx0 = evalCubic(a, b, c, d, x0);
> +- for (int i = off; i < off + numCritPts - 1; i++) {
> +- float x1 = pts[i+1], fx1 = evalCubic(a, b, c, d, x1);
> +- if (fx0 == 0f) {
> +- pts[ret++] = x0;
> +- } else if (fx1 * fx0 < 0f) { // have opposite signs
> +- pts[ret++] = CubicNewton(a, b, c, d,
> +- x0 + fx0 * (x1 - x0) / (fx0 - fx1), E);
> ++ if (d == 0) {
> ++ int num = quadraticRoots(a, b, c, pts, off);
> ++ return filterOutNotInAB(pts, off, num, A, B) - off;
> ++ }
> ++ // From Graphics Gems:
> ++ // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
> ++ // (also from awt.geom.CubicCurve2D. But here we don't need as
> ++ // much accuracy and we don't want to create arrays so we use
> ++ // our own customized version).
> ++
> ++ /* normal form: x^3 + ax^2 + bx + c = 0 */
> ++ a /= d;
> ++ b /= d;
> ++ c /= d;
> ++
> ++ // substitute x = y - A/3 to eliminate quadratic term:
> ++ // x^3 +Px + Q = 0
> ++ //
> ++ // Since we actually need P/3 and Q/2 for all of the
> ++ // calculations that follow, we will calculate
> ++ // p = P/3
> ++ // q = Q/2
> ++ // instead and use those values for simplicity of the code.
> ++ double sq_A = a * a;
> ++ double p = 1.0/3 * (-1.0/3 * sq_A + b);
> ++ double q = 1.0/2 * (2.0/27 * a * sq_A - 1.0/3 * a * b + c);
> ++
> ++ /* use Cardano's formula */
> ++
> ++ double cb_p = p * p * p;
> ++ double D = q * q + cb_p;
> ++
> ++ int num;
> ++ if (D < 0) {
> ++ // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
> ++ final double phi = 1.0/3 * acos(-q / sqrt(-cb_p));
> ++ final double t = 2 * sqrt(-p);
> ++
> ++ pts[ off+0 ] = (float)( t * cos(phi));
> ++ pts[ off+1 ] = (float)(-t * cos(phi + PI / 3));
> ++ pts[ off+2 ] = (float)(-t * cos(phi - PI / 3));
> ++ num = 3;
> ++ } else {
> ++ final double sqrt_D = sqrt(D);
> ++ final double u = cbrt(sqrt_D - q);
> ++ final double v = - cbrt(sqrt_D + q);
> ++
> ++ pts[ off ] = (float)(u + v);
> ++ num = 1;
> ++
> ++ if (within(D, 0, 1e-8)) {
> ++ pts[off+1] = -(pts[off] / 2);
> ++ num = 2;
> + }
> +- x0 = x1;
> +- fx0 = fx1;
> + }
> +- return ret - off;
> +- }
> +
> +- // precondition: the polynomial to be evaluated must not be 0 at x0.
> +- static float CubicNewton(final float a, final float b,
> +- final float c, final float d,
> +- float x0, final float err)
> +- {
> +- // considering how this function is used, 10 should be more than enough
> +- final int itlimit = 10;
> +- float fx0 = evalCubic(a, b, c, d, x0);
> +- float x1;
> +- int count = 0;
> +- while(true) {
> +- x1 = x0 - (fx0 / evalCubic(0, 3 * a, 2 * b, c, x0));
> +- if (Math.abs(x1 - x0) < err * Math.abs(x1 + x0) || count == itlimit) {
> +- break;
> +- }
> +- x0 = x1;
> +- fx0 = evalCubic(a, b, c, d, x0);
> +- count++;
> +- }
> +- return x1;
> +- }
> ++ final float sub = 1.0f/3 * a;
> +
> +- // fills the input array with numbers 0, INC, 2*INC, ...
> +- static void fillWithIdxes(final float[] data, final int[] idxes) {
> +- if (idxes.length > 0) {
> +- idxes[0] = 0;
> +- for (int i = 1; i < idxes.length; i++) {
> +- idxes[i] = idxes[i-1] + (int)data[idxes[i-1]];
> +- }
> ++ for (int i = 0; i < num; ++i) {
> ++ pts[ off+i ] -= sub;
> + }
> +- }
> +
> +- static void fillWithIdxes(final int[] idxes, final int inc) {
> +- if (idxes.length > 0) {
> +- idxes[0] = 0;
> +- for (int i = 1; i < idxes.length; i++) {
> +- idxes[i] = idxes[i-1] + inc;
> +- }
> +- }
> ++ return filterOutNotInAB(pts, off, num, A, B) - off;
> + }
> +
> + // These use a hardcoded factor of 2 for increasing sizes. Perhaps this
> +@@ -182,6 +162,7 @@
> + }
> + return Arrays.copyOf(in, 2 * (cursize + numToAdd));
> + }
> ++
> + static int[] widenArray(int[] in, final int cursize, final int numToAdd) {
> + if (in.length >= cursize + numToAdd) {
> + return in;
> +@@ -208,7 +189,7 @@
> + {
> + int ret = off;
> + for (int i = off; i < off + len; i++) {
> +- if (nums[i] > a && nums[i] < b) {
> ++ if (nums[i] >= a && nums[i] < b) {
> + nums[ret++] = nums[i];
> + }
> + }
> +@@ -225,7 +206,9 @@
> + }
> +
> + static float linelen(float x1, float y1, float x2, float y2) {
> +- return (float)Math.hypot(x2 - x1, y2 - y1);
> ++ final float dx = x2 - x1;
> ++ final float dy = y2 - y1;
> ++ return (float)Math.sqrt(dx*dx + dy*dy);
> + }
> +
> + static void subdivide(float[] src, int srcoff, float[] left, int leftoff,
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesCache.java ./openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesCache.java
> +--- ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesCache.java 2011-02-04 11:09:54.298266201 -0500
> ++++ ./openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesCache.java 2011-02-04 11:12:33.709564632 -0500
> +@@ -32,7 +32,7 @@
> + *
> + * @see PiscesRenderer#render
> + */
> +-public final class PiscesCache {
> ++final class PiscesCache {
> +
> + final int bboxX0, bboxY0, bboxX1, bboxY1;
> +
> +@@ -167,7 +167,6 @@
> + rowAARLE[row][1] = end;
> + }
> +
> +-
> + public String toString() {
> + String ret = "bbox = ["+
> + bboxX0+", "+bboxY0+" => "+
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java ./openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java
> +--- ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java 2011-02-04 11:09:54.298266201 -0500
> ++++ ./openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java 2011-02-04 11:12:36.101250340 -0500
> +@@ -1,5 +1,5 @@
> + /*
> +- * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
> ++ * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
> + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> + *
> + * This code is free software; you can redistribute it and/or modify it
> +@@ -27,7 +27,6 @@
> +
> + import java.awt.Shape;
> + import java.awt.BasicStroke;
> +-import java.awt.geom.NoninvertibleTransformException;
> + import java.awt.geom.Path2D;
> + import java.awt.geom.AffineTransform;
> + import java.awt.geom.PathIterator;
> +@@ -250,7 +249,7 @@
> + float dashphase,
> + PathConsumer2D pc2d)
> + {
> +- // We use inat and outat so that in Stroker and Dasher we can work only
> ++ // We use strokerat and outat so that in Stroker and Dasher we can work only
> + // with the pre-transformation coordinates. This will repeat a lot of
> + // computations done in the path iterator, but the alternative is to
> + // work with transformed paths and compute untransformed coordinates
> +@@ -265,7 +264,7 @@
> + // transformation after the path processing has been done.
> + // We can't do this if normalization is on, because it isn't a good
> + // idea to normalize before the transformation is applied.
> +- AffineTransform inat = null;
> ++ AffineTransform strokerat = null;
> + AffineTransform outat = null;
> +
> + PathIterator pi = null;
> +@@ -284,9 +283,9 @@
> + // again so, nothing can be drawn.
> +
> + // Every path needs an initial moveTo and a pathDone. If these
> +- // aren't there this causes a SIGSEV in libawt.so (at the time
> ++ // are not there this causes a SIGSEGV in libawt.so (at the time
> + // of writing of this comment (September 16, 2010)). Actually,
> +- // I'm not sure if the moveTo is necessary to avoid the SIGSEV
> ++ // I am not sure if the moveTo is necessary to avoid the SIGSEGV
> + // but the pathDone is definitely needed.
> + pc2d.moveTo(0, 0);
> + pc2d.pathDone();
> +@@ -313,25 +312,32 @@
> + if (normalize != NormMode.OFF) {
> + pi = new NormalizingPathIterator(pi, normalize);
> + }
> +- // leave inat and outat null.
> ++ // by now strokerat == null && outat == null. Input paths to
> ++ // stroker (and maybe dasher) will have the full transform at
> ++ // applied to them and nothing will happen to the output paths.
> + } else {
> +- // We only need the inverse if normalization is on. Otherwise
> +- // we just don't transform the input paths, do all the stroking
> +- // and then transform out output (instead of making PathIterator
> +- // apply the transformation, us applying the inverse, and then
> +- // us applying the transform again to our output).
> +- outat = at;
> + if (normalize != NormMode.OFF) {
> +- try {
> +- inat = outat.createInverse();
> +- } catch (NoninvertibleTransformException e) {
> +- // we made sure this can't happen
> +- e.printStackTrace();
> +- }
> ++ strokerat = at;
> + pi = src.getPathIterator(at);
> + pi = new NormalizingPathIterator(pi, normalize);
> ++ // by now strokerat == at && outat == null. Input paths to
> ++ // stroker (and maybe dasher) will have the full transform at
> ++ // applied to them, then they will be normalized, and then
> ++ // the inverse of *only the non translation part of at* will
> ++ // be applied to the normalized paths. This won't cause problems
> ++ // in stroker, because, suppose at = T*A, where T is just the
> ++ // translation part of at, and A is the rest. T*A has already
> ++ // been applied to Stroker/Dasher's input. Then Ainv will be
> ++ // applied. Ainv*T*A is not equal to T, but it is a translation,
> ++ // which means that none of stroker's assumptions about its
> ++ // input will be violated. After all this, A will be applied
> ++ // to stroker's output.
> + } else {
> ++ outat = at;
> + pi = src.getPathIterator(null);
> ++ // outat == at && strokerat == null. This is because if no
> ++ // normalization is done, we can just apply all our
> ++ // transformations to stroker's output.
> + }
> + }
> + } else {
> +@@ -343,13 +349,17 @@
> + }
> + }
> +
> ++ // by now, at least one of outat and strokerat will be null. Unless at is not
> ++ // a constant multiple of an orthogonal transformation, they will both be
> ++ // null. In other cases, outat == at if normalization is off, and if
> ++ // normalization is on, strokerat == at.
> + pc2d = TransformingPathConsumer2D.transformConsumer(pc2d, outat);
> ++ pc2d = TransformingPathConsumer2D.deltaTransformConsumer(pc2d, strokerat);
> + pc2d = new Stroker(pc2d, width, caps, join, miterlimit);
> + if (dashes != null) {
> + pc2d = new Dasher(pc2d, dashes, dashphase);
> + }
> +- pc2d = TransformingPathConsumer2D.transformConsumer(pc2d, inat);
> +-
> ++ pc2d = TransformingPathConsumer2D.inverseDeltaTransformConsumer(pc2d, strokerat);
> + pathTo(pi, pc2d);
> + }
> +
> +@@ -557,6 +567,69 @@
> + return ptg;
> + }
> +
> ++ public AATileGenerator getAATileGenerator(double x, double y,
> ++ double dx1, double dy1,
> ++ double dx2, double dy2,
> ++ double lw1, double lw2,
> ++ Region clip,
> ++ int bbox[])
> ++ {
> ++ // REMIND: Deal with large coordinates!
> ++ double ldx1, ldy1, ldx2, ldy2;
> ++ boolean innerpgram = (lw1 > 0 && lw2 > 0);
> ++
> ++ if (innerpgram) {
> ++ ldx1 = dx1 * lw1;
> ++ ldy1 = dy1 * lw1;
> ++ ldx2 = dx2 * lw2;
> ++ ldy2 = dy2 * lw2;
> ++ x -= (ldx1 + ldx2) / 2.0;
> ++ y -= (ldy1 + ldy2) / 2.0;
> ++ dx1 += ldx1;
> ++ dy1 += ldy1;
> ++ dx2 += ldx2;
> ++ dy2 += ldy2;
> ++ if (lw1 > 1 && lw2 > 1) {
> ++ // Inner parallelogram was entirely consumed by stroke...
> ++ innerpgram = false;
> ++ }
> ++ } else {
> ++ ldx1 = ldy1 = ldx2 = ldy2 = 0;
> ++ }
> ++
> ++ Renderer r = new Renderer(3, 3,
> ++ clip.getLoX(), clip.getLoY(),
> ++ clip.getWidth(), clip.getHeight(),
> ++ PathIterator.WIND_EVEN_ODD);
> ++
> ++ r.moveTo((float) x, (float) y);
> ++ r.lineTo((float) (x+dx1), (float) (y+dy1));
> ++ r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
> ++ r.lineTo((float) (x+dx2), (float) (y+dy2));
> ++ r.closePath();
> ++
> ++ if (innerpgram) {
> ++ x += ldx1 + ldx2;
> ++ y += ldy1 + ldy2;
> ++ dx1 -= 2.0 * ldx1;
> ++ dy1 -= 2.0 * ldy1;
> ++ dx2 -= 2.0 * ldx2;
> ++ dy2 -= 2.0 * ldy2;
> ++ r.moveTo((float) x, (float) y);
> ++ r.lineTo((float) (x+dx1), (float) (y+dy1));
> ++ r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
> ++ r.lineTo((float) (x+dx2), (float) (y+dy2));
> ++ r.closePath();
> ++ }
> ++
> ++ r.pathDone();
> ++
> ++ r.endRendering();
> ++ PiscesTileGenerator ptg = new PiscesTileGenerator(r, r.MAX_AA_ALPHA);
> ++ ptg.getBbox(bbox);
> ++ return ptg;
> ++ }
> ++
> + /**
> + * Returns the minimum pen width that the antialiasing rasterizer
> + * can represent without dropouts occuring.
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java ./openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java
> +--- ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java 2011-02-04 11:09:54.298266201 -0500
> ++++ ./openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java 2011-02-04 11:12:38.242283934 -0500
> +@@ -30,7 +30,7 @@
> +
> + import sun.java2d.pipe.AATileGenerator;
> +
> +-public final class PiscesTileGenerator implements AATileGenerator {
> ++final class PiscesTileGenerator implements AATileGenerator {
> + public static final int TILE_SIZE = PiscesCache.TILE_SIZE;
> +
> + // perhaps we should be using weak references here, but right now
> +@@ -250,4 +250,4 @@
> + * No further calls will be made on this instance.
> + */
> + public void dispose() {}
> +-}
> +\ No newline at end of file
> ++}
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Renderer.java ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Renderer.java
> +--- ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Renderer.java 2011-02-04 11:09:54.298266201 -0500
> ++++ ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Renderer.java 2011-02-04 11:12:53.420858385 -0500
> +@@ -1,5 +1,5 @@
> + /*
> +- * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
> ++ * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
> + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> + *
> + * This code is free software; you can redistribute it and/or modify it
> +@@ -25,12 +25,9 @@
> +
> + package sun.java2d.pisces;
> +
> +-import java.util.Arrays;
> +-import java.util.Iterator;
> +-
> + import sun.awt.geom.PathConsumer2D;
> +
> +-public class Renderer implements PathConsumer2D {
> ++final class Renderer implements PathConsumer2D {
> +
> + private class ScanlineIterator {
> +
> +@@ -39,115 +36,81 @@
> + // crossing bounds. The bounds are not necessarily tight (the scan line
> + // at minY, for example, might have no crossings). The x bounds will
> + // be accumulated as crossings are computed.
> +- private int minY, maxY;
> ++ private final int maxY;
> + private int nextY;
> +
> + // indices into the segment pointer lists. They indicate the "active"
> + // sublist in the segment lists (the portion of the list that contains
> + // all the segments that cross the next scan line).
> +- private int elo, ehi;
> +- private final int[] edgePtrs;
> +- private int qlo, qhi;
> +- private final int[] quadPtrs;
> +- private int clo, chi;
> +- private final int[] curvePtrs;
> ++ private int edgeCount;
> ++ private int[] edgePtrs;
> +
> + private static final int INIT_CROSSINGS_SIZE = 10;
> +
> + private ScanlineIterator() {
> + crossings = new int[INIT_CROSSINGS_SIZE];
> +-
> +- edgePtrs = new int[numEdges];
> +- Helpers.fillWithIdxes(edgePtrs, SIZEOF_EDGE);
> +- qsort(edges, edgePtrs, YMIN, 0, numEdges - 1);
> +-
> +- quadPtrs = new int[numQuads];
> +- Helpers.fillWithIdxes(quadPtrs, SIZEOF_QUAD);
> +- qsort(quads, quadPtrs, YMIN, 0, numQuads - 1);
> +-
> +- curvePtrs = new int[numCurves];
> +- Helpers.fillWithIdxes(curvePtrs, SIZEOF_CURVE);
> +- qsort(curves, curvePtrs, YMIN, 0, numCurves - 1);
> ++ edgePtrs = new int[INIT_CROSSINGS_SIZE];
> +
> + // We don't care if we clip some of the line off with ceil, since
> + // no scan line crossings will be eliminated (in fact, the ceil is
> + // the y of the first scan line crossing).
> +- nextY = minY = Math.max(boundsMinY, (int)Math.ceil(edgeMinY));
> +- maxY = Math.min(boundsMaxY, (int)Math.ceil(edgeMaxY));
> +-
> +- for (elo = 0; elo < numEdges && edges[edgePtrs[elo]+YMAX] <= minY; elo++)
> +- ;
> +- // the active list is *edgePtrs[lo] (inclusive) *edgePtrs[hi] (exclusive)
> +- for (ehi = elo; ehi < numEdges && edges[edgePtrs[ehi]+YMIN] <= minY; ehi++)
> +- edgeSetCurY(edgePtrs[ehi], minY);// TODO: make minY a float to avoid casts
> +-
> +- for (qlo = 0; qlo < numQuads && quads[quadPtrs[qlo]+YMAX] <= minY; qlo++)
> +- ;
> +- for (qhi = qlo; qhi < numQuads && quads[quadPtrs[qhi]+YMIN] <= minY; qhi++)
> +- quadSetCurY(quadPtrs[qhi], minY);
> +-
> +- for (clo = 0; clo < numCurves && curves[curvePtrs[clo]+YMAX] <= minY; clo++)
> +- ;
> +- for (chi = clo; chi < numCurves && curves[curvePtrs[chi]+YMIN] <= minY; chi++)
> +- curveSetCurY(curvePtrs[chi], minY);
> ++ final int minY = getFirstScanLineCrossing();
> ++ nextY = minY;
> ++ maxY = getScanLineCrossingEnd()-1;
> ++ edgeCount = 0;
> + }
> +
> + private int next() {
> +- // we go through the active lists and remove segments that don't cross
> +- // the nextY scanline.
> +- int crossingIdx = 0;
> +- for (int i = elo; i < ehi; i++) {
> +- if (edges[edgePtrs[i]+YMAX] <= nextY) {
> +- edgePtrs[i] = edgePtrs[elo++];
> ++ int cury = nextY++;
> ++ int bucket = cury - boundsMinY;
> ++ int count = this.edgeCount;
> ++ int ptrs[] = this.edgePtrs;
> ++ int bucketcount = edgeBucketCounts[bucket];
> ++ if ((bucketcount & 0x1) != 0) {
> ++ int newCount = 0;
> ++ for (int i = 0; i < count; i++) {
> ++ int ecur = ptrs[i];
> ++ if (edges[ecur+YMAX] > cury) {
> ++ ptrs[newCount++] = ecur;
> ++ }
> + }
> ++ count = newCount;
> + }
> +- for (int i = qlo; i < qhi; i++) {
> +- if (quads[quadPtrs[i]+YMAX] <= nextY) {
> +- quadPtrs[i] = quadPtrs[qlo++];
> ++ ptrs = Helpers.widenArray(ptrs, count, bucketcount >> 1);
> ++ for (int ecur = edgeBuckets[bucket]; ecur != NULL; ecur = (int)edges[ecur+NEXT]) {
> ++ ptrs[count++] = ecur;
> ++ // REMIND: Adjust start Y if necessary
> ++ }
> ++ this.edgePtrs = ptrs;
> ++ this.edgeCount = count;
> ++// if ((count & 0x1) != 0) {
> ++// System.out.println("ODD NUMBER OF EDGES!!!!");
> ++// }
> ++ int xings[] = this.crossings;
> ++ if (xings.length < count) {
> ++ this.crossings = xings = new int[ptrs.length];
> ++ }
> ++ for (int i = 0; i < count; i++) {
> ++ int ecur = ptrs[i];
> ++ float curx = edges[ecur+CURX];
> ++ int cross = ((int) curx) << 1;
> ++ edges[ecur+CURX] = curx + edges[ecur+SLOPE];
> ++ if (edges[ecur+OR] > 0) {
> ++ cross |= 1;
> + }
> +- }
> +- for (int i = clo; i < chi; i++) {
> +- if (curves[curvePtrs[i]+YMAX] <= nextY) {
> +- curvePtrs[i] = curvePtrs[clo++];
> ++ int j = i;
> ++ while (--j >= 0) {
> ++ int jcross = xings[j];
> ++ if (jcross <= cross) {
> ++ break;
> ++ }
> ++ xings[j+1] = jcross;
> ++ ptrs[j+1] = ptrs[j];
> + }
> ++ xings[j+1] = cross;
> ++ ptrs[j+1] = ecur;
> + }
> +-
> +- crossings = Helpers.widenArray(crossings, 0, ehi-elo+qhi-qlo+chi-clo);
> +-
> +- // Now every edge between lo and hi crosses nextY. Compute it's
> +- // crossing and put it in the crossings array.
> +- for (int i = elo; i < ehi; i++) {
> +- int ptr = edgePtrs[i];
> +- addCrossing(nextY, (int)edges[ptr+CURX], edges[ptr+OR], crossingIdx);
> +- edgeGoToNextY(ptr);
> +- crossingIdx++;
> +- }
> +- for (int i = qlo; i < qhi; i++) {
> +- int ptr = quadPtrs[i];
> +- addCrossing(nextY, (int)quads[ptr+CURX], quads[ptr+OR], crossingIdx);
> +- quadGoToNextY(ptr);
> +- crossingIdx++;
> +- }
> +- for (int i = clo; i < chi; i++) {
> +- int ptr = curvePtrs[i];
> +- addCrossing(nextY, (int)curves[ptr+CURX], curves[ptr+OR], crossingIdx);
> +- curveGoToNextY(ptr);
> +- crossingIdx++;
> +- }
> +-
> +- nextY++;
> +- // Expand active lists to include new edges.
> +- for (; ehi < numEdges && edges[edgePtrs[ehi]+YMIN] <= nextY; ehi++) {
> +- edgeSetCurY(edgePtrs[ehi], nextY);
> +- }
> +- for (; qhi < numQuads && quads[quadPtrs[qhi]+YMIN] <= nextY; qhi++) {
> +- quadSetCurY(quadPtrs[qhi], nextY);
> +- }
> +- for (; chi < numCurves && curves[curvePtrs[chi]+YMIN] <= nextY; chi++) {
> +- curveSetCurY(curvePtrs[chi], nextY);
> +- }
> +- Arrays.sort(crossings, 0, crossingIdx);
> +- return crossingIdx;
> ++ return count;
> + }
> +
> + private boolean hasNext() {
> +@@ -157,321 +120,97 @@
> + private int curY() {
> + return nextY - 1;
> + }
> +-
> +- private void addCrossing(int y, int x, float or, int idx) {
> +- x <<= 1;
> +- crossings[idx] = ((or > 0) ? (x | 0x1) : x);
> +- }
> +- }
> +- // quicksort implementation for sorting the edge indices ("pointers")
> +- // by increasing y0. first, last are indices into the "pointer" array
> +- // It sorts the pointer array from first (inclusive) to last (inclusive)
> +- private static void qsort(final float[] data, final int[] ptrs,
> +- final int fieldForCmp, int first, int last)
> +- {
> +- if (last > first) {
> +- int p = partition(data, ptrs, fieldForCmp, first, last);
> +- if (first < p - 1) {
> +- qsort(data, ptrs, fieldForCmp, first, p - 1);
> +- }
> +- if (p < last) {
> +- qsort(data, ptrs, fieldForCmp, p, last);
> +- }
> +- }
> + }
> +
> +- // i, j are indices into edgePtrs.
> +- private static int partition(final float[] data, final int[] ptrs,
> +- final int fieldForCmp, int i, int j)
> +- {
> +- int pivotValFieldForCmp = ptrs[i]+fieldForCmp;
> +- while (i <= j) {
> +- // edges[edgePtrs[i]+1] is equivalent to (*(edgePtrs[i])).y0 in C
> +- while (data[ptrs[i]+fieldForCmp] < data[pivotValFieldForCmp])
> +- i++;
> +- while (data[ptrs[j]+fieldForCmp] > data[pivotValFieldForCmp])
> +- j--;
> +- if (i <= j) {
> +- int tmp = ptrs[i];
> +- ptrs[i] = ptrs[j];
> +- ptrs[j] = tmp;
> +- i++;
> +- j--;
> +- }
> +- }
> +- return i;
> +- }
> +-//============================================================================
> +-
> +
> + //////////////////////////////////////////////////////////////////////////////
> + // EDGE LIST
> + //////////////////////////////////////////////////////////////////////////////
> + // TODO(maybe): very tempting to use fixed point here. A lot of opportunities
> + // for shifts and just removing certain operations altogether.
> +-// TODO: it might be worth it to make an EdgeList class. It would probably
> +-// clean things up a bit and not impact performance much.
> +
> + // common to all types of input path segments.
> +- private static final int YMIN = 0;
> +- private static final int YMAX = 1;
> +- private static final int CURX = 2;
> +- // this and OR are meant to be indeces into "int" fields, but arrays must
> ++ private static final int YMAX = 0;
> ++ private static final int CURX = 1;
> ++ // NEXT and OR are meant to be indices into "int" fields, but arrays must
> + // be homogenous, so every field is a float. However floats can represent
> + // exactly up to 26 bit ints, so we're ok.
> +- private static final int CURY = 3;
> +- private static final int OR = 4;
> +-
> +- // for straight lines only:
> +- private static final int SLOPE = 5;
> +-
> +- // for quads and cubics:
> +- private static final int X0 = 5;
> +- private static final int Y0 = 6;
> +- private static final int XL = 7;
> +- private static final int COUNT = 8;
> +- private static final int CURSLOPE = 9;
> +- private static final int DX = 10;
> +- private static final int DY = 11;
> +- private static final int DDX = 12;
> +- private static final int DDY = 13;
> +-
> +- // for cubics only
> +- private static final int DDDX = 14;
> +- private static final int DDDY = 15;
> ++ private static final int OR = 2;
> ++ private static final int SLOPE = 3;
> ++ private static final int NEXT = 4;
> +
> + private float edgeMinY = Float.POSITIVE_INFINITY;
> + private float edgeMaxY = Float.NEGATIVE_INFINITY;
> + private float edgeMinX = Float.POSITIVE_INFINITY;
> + private float edgeMaxX = Float.NEGATIVE_INFINITY;
> +
> +- private static final int SIZEOF_EDGE = 6;
> ++ private static final int SIZEOF_EDGE = 5;
> ++ // don't just set NULL to -1, because we want NULL+NEXT to be negative.
> ++ private static final int NULL = -SIZEOF_EDGE;
> + private float[] edges = null;
> ++ private int[] edgeBuckets = null;
> ++ private int[] edgeBucketCounts = null; // 2*newedges + (1 if pruning needed)
> + private int numEdges;
> +- // these are static because we need them to be usable from ScanlineIterator
> +- private void edgeSetCurY(final int idx, int y) {
> +- edges[idx+CURX] += (y - edges[idx+CURY]) * edges[idx+SLOPE];
> +- edges[idx+CURY] = y;
> +- }
> +- private void edgeGoToNextY(final int idx) {
> +- edges[idx+CURY] += 1;
> +- edges[idx+CURX] += edges[idx+SLOPE];
> +- }
> +-
> +-
> +- private static final int SIZEOF_QUAD = 14;
> +- private float[] quads = null;
> +- private int numQuads;
> +- // This function should be called exactly once, to set the first scanline
> +- // of the curve. Before it is called, the curve should think its first
> +- // scanline is CEIL(YMIN).
> +- private void quadSetCurY(final int idx, final int y) {
> +- assert y < quads[idx+YMAX];
> +- assert (quads[idx+CURY] > y);
> +- assert (quads[idx+CURY] == Math.ceil(quads[idx+CURY]));
> +-
> +- while (quads[idx+CURY] < ((float)y)) {
> +- quadGoToNextY(idx);
> +- }
> +- }
> +- private void quadGoToNextY(final int idx) {
> +- quads[idx+CURY] += 1;
> +- // this will get overriden if the while executes.
> +- quads[idx+CURX] += quads[idx+CURSLOPE];
> +- int count = (int)quads[idx+COUNT];
> +- // this loop should never execute more than once because our
> +- // curve is monotonic in Y. Still we put it in because you can
> +- // never be too sure when dealing with floating point.
> +- while(quads[idx+CURY] >= quads[idx+Y0] && count > 0) {
> +- float x0 = quads[idx+X0], y0 = quads[idx+Y0];
> +- count = executeQuadAFDIteration(idx);
> +- float x1 = quads[idx+X0], y1 = quads[idx+Y0];
> +- // our quads are monotonic, so this shouldn't happen, but
> +- // it is conceivable that for very flat quads with different
> +- // y values at their endpoints AFD might give us a horizontal
> +- // segment.
> +- if (y1 == y0) {
> +- continue;
> +- }
> +- quads[idx+CURSLOPE] = (x1 - x0) / (y1 - y0);
> +- quads[idx+CURX] = x0 + (quads[idx+CURY] - y0) * quads[idx+CURSLOPE];
> +- }
> +- }
> +-
> +-
> +- private static final int SIZEOF_CURVE = 16;
> +- private float[] curves = null;
> +- private int numCurves;
> +- private void curveSetCurY(final int idx, final int y) {
> +- assert y < curves[idx+YMAX];
> +- assert (curves[idx+CURY] > y);
> +- assert (curves[idx+CURY] == Math.ceil(curves[idx+CURY]));
> +-
> +- while (curves[idx+CURY] < ((float)y)) {
> +- curveGoToNextY(idx);
> +- }
> +- }
> +- private void curveGoToNextY(final int idx) {
> +- curves[idx+CURY] += 1;
> +- // this will get overriden if the while executes.
> +- curves[idx+CURX] += curves[idx+CURSLOPE];
> +- int count = (int)curves[idx+COUNT];
> +- // this loop should never execute more than once because our
> +- // curve is monotonic in Y. Still we put it in because you can
> +- // never be too sure when dealing with floating point.
> +- while(curves[idx+CURY] >= curves[idx+Y0] && count > 0) {
> +- float x0 = curves[idx+X0], y0 = curves[idx+Y0];
> +- count = executeCurveAFDIteration(idx);
> +- float x1 = curves[idx+X0], y1 = curves[idx+Y0];
> +- // our curves are monotonic, so this shouldn't happen, but
> +- // it is conceivable that for very flat curves with different
> +- // y values at their endpoints AFD might give us a horizontal
> +- // segment.
> +- if (y1 == y0) {
> +- continue;
> +- }
> +- curves[idx+CURSLOPE] = (x1 - x0) / (y1 - y0);
> +- curves[idx+CURX] = x0 + (curves[idx+CURY] - y0) * curves[idx+CURSLOPE];
> +- }
> +- }
> +-
> +
> + private static final float DEC_BND = 20f;
> + private static final float INC_BND = 8f;
> ++
> ++ // each bucket is a linked list. this method adds eptr to the
> ++ // start "bucket"th linked list.
> ++ private void addEdgeToBucket(final int eptr, final int bucket) {
> ++ edges[eptr+NEXT] = edgeBuckets[bucket];
> ++ edgeBuckets[bucket] = eptr;
> ++ edgeBucketCounts[bucket] += 2;
> ++ }
> ++
> + // Flattens using adaptive forward differencing. This only carries out
> + // one iteration of the AFD loop. All it does is update AFD variables (i.e.
> + // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
> +- private int executeQuadAFDIteration(int idx) {
> +- int count = (int)quads[idx+COUNT];
> +- float ddx = quads[idx+DDX];
> +- float ddy = quads[idx+DDY];
> +- float dx = quads[idx+DX];
> +- float dy = quads[idx+DY];
> +-
> +- while (Math.abs(ddx) > DEC_BND || Math.abs(ddy) > DEC_BND) {
> +- ddx = ddx / 4;
> +- ddy = ddy / 4;
> +- dx = (dx - ddx) / 2;
> +- dy = (dy - ddy) / 2;
> ++ private void quadBreakIntoLinesAndAdd(float x0, float y0,
> ++ final Curve c,
> ++ final float x2, final float y2) {
> ++ final float QUAD_DEC_BND = 32;
> ++ final int countlg = 4;
> ++ int count = 1 << countlg;
> ++ int countsq = count * count;
> ++ float maxDD = Math.max(c.dbx / countsq, c.dby / countsq);
> ++ while (maxDD > QUAD_DEC_BND) {
> ++ maxDD /= 4;
> + count <<= 1;
> + }
> +- // can only do this on even "count" values, because we must divide count by 2
> +- while (count % 2 == 0 && Math.abs(dx) <= INC_BND && Math.abs(dy) <= INC_BND) {
> +- dx = 2 * dx + ddx;
> +- dy = 2 * dy + ddy;
> +- ddx = 4 * ddx;
> +- ddy = 4 * ddy;
> +- count >>= 1;
> +- }
> +- count--;
> +- if (count > 0) {
> +- quads[idx+X0] += dx;
> +- dx += ddx;
> +- quads[idx+Y0] += dy;
> +- dy += ddy;
> +- } else {
> +- quads[idx+X0] = quads[idx+XL];
> +- quads[idx+Y0] = quads[idx+YMAX];
> +- }
> +- quads[idx+COUNT] = count;
> +- quads[idx+DDX] = ddx;
> +- quads[idx+DDY] = ddy;
> +- quads[idx+DX] = dx;
> +- quads[idx+DY] = dy;
> +- return count;
> +- }
> +- private int executeCurveAFDIteration(int idx) {
> +- int count = (int)curves[idx+COUNT];
> +- float ddx = curves[idx+DDX];
> +- float ddy = curves[idx+DDY];
> +- float dx = curves[idx+DX];
> +- float dy = curves[idx+DY];
> +- float dddx = curves[idx+DDDX];
> +- float dddy = curves[idx+DDDY];
> +-
> +- while (Math.abs(ddx) > DEC_BND || Math.abs(ddy) > DEC_BND) {
> +- dddx /= 8;
> +- dddy /= 8;
> +- ddx = ddx/4 - dddx;
> +- ddy = ddy/4 - dddy;
> +- dx = (dx - ddx) / 2;
> +- dy = (dy - ddy) / 2;
> +- count <<= 1;
> +- }
> +- // can only do this on even "count" values, because we must divide count by 2
> +- while (count % 2 == 0 && Math.abs(dx) <= INC_BND && Math.abs(dy) <= INC_BND) {
> +- dx = 2 * dx + ddx;
> +- dy = 2 * dy + ddy;
> +- ddx = 4 * (ddx + dddx);
> +- ddy = 4 * (ddy + dddy);
> +- dddx = 8 * dddx;
> +- dddy = 8 * dddy;
> +- count >>= 1;
> +- }
> +- count--;
> +- if (count > 0) {
> +- curves[idx+X0] += dx;
> +- dx += ddx;
> +- ddx += dddx;
> +- curves[idx+Y0] += dy;
> +- dy += ddy;
> +- ddy += dddy;
> +- } else {
> +- curves[idx+X0] = curves[idx+XL];
> +- curves[idx+Y0] = curves[idx+YMAX];
> +- }
> +- curves[idx+COUNT] = count;
> +- curves[idx+DDDX] = dddx;
> +- curves[idx+DDDY] = dddy;
> +- curves[idx+DDX] = ddx;
> +- curves[idx+DDY] = ddy;
> +- curves[idx+DX] = dx;
> +- curves[idx+DY] = dy;
> +- return count;
> +- }
> +-
> +
> +- private void initLine(final int idx, float[] pts, int or) {
> +- edges[idx+SLOPE] = (pts[2] - pts[0]) / (pts[3] - pts[1]);
> +- edges[idx+CURX] = pts[0] + (edges[idx+CURY] - pts[1]) * edges[idx+SLOPE];
> +- }
> +-
> +- private void initQuad(final int idx, float[] points, int or) {
> +- final int countlg = 3;
> +- final int count = 1 << countlg;
> ++ countsq = count * count;
> ++ final float ddx = c.dbx / countsq;
> ++ final float ddy = c.dby / countsq;
> ++ float dx = c.bx / countsq + c.cx / count;
> ++ float dy = c.by / countsq + c.cy / count;
> +
> +- // the dx and dy refer to forward differencing variables, not the last
> +- // coefficients of the "points" polynomial
> +- final float ddx, ddy, dx, dy;
> +- c.set(points, 6);
> +-
> +- ddx = c.dbx / (1 << (2 * countlg));
> +- ddy = c.dby / (1 << (2 * countlg));
> +- dx = c.bx / (1 << (2 * countlg)) + c.cx / (1 << countlg);
> +- dy = c.by / (1 << (2 * countlg)) + c.cy / (1 << countlg);
> +-
> +- quads[idx+DDX] = ddx;
> +- quads[idx+DDY] = ddy;
> +- quads[idx+DX] = dx;
> +- quads[idx+DY] = dy;
> +- quads[idx+COUNT] = count;
> +- quads[idx+XL] = points[4];
> +- quads[idx+X0] = points[0];
> +- quads[idx+Y0] = points[1];
> +- executeQuadAFDIteration(idx);
> +- float x1 = quads[idx+X0], y1 = quads[idx+Y0];
> +- quads[idx+CURSLOPE] = (x1 - points[0]) / (y1 - points[1]);
> +- quads[idx+CURX] = points[0] + (quads[idx+CURY] - points[1])*quads[idx+CURSLOPE];
> ++ while (count-- > 1) {
> ++ float x1 = x0 + dx;
> ++ dx += ddx;
> ++ float y1 = y0 + dy;
> ++ dy += ddy;
> ++ addLine(x0, y0, x1, y1);
> ++ x0 = x1;
> ++ y0 = y1;
> ++ }
> ++ addLine(x0, y0, x2, y2);
> + }
> +
> +- private void initCurve(final int idx, float[] points, int or) {
> ++ // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
> ++ // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
> ++ // numerical errors, and our callers already have the exact values.
> ++ // Another alternative would be to pass all the control points, and call c.set
> ++ // here, but then too many numbers are passed around.
> ++ private void curveBreakIntoLinesAndAdd(float x0, float y0,
> ++ final Curve c,
> ++ final float x3, final float y3) {
> + final int countlg = 3;
> +- final int count = 1 << countlg;
> ++ int count = 1 << countlg;
> +
> + // the dx and dy refer to forward differencing variables, not the last
> + // coefficients of the "points" polynomial
> +- final float dddx, dddy, ddx, ddy, dx, dy;
> +- c.set(points, 8);
> ++ float dddx, dddy, ddx, ddy, dx, dy;
> + dddx = 2f * c.dax / (1 << (3 * countlg));
> + dddy = 2f * c.day / (1 << (3 * countlg));
> +
> +@@ -480,93 +219,100 @@
> + dx = c.ax / (1 << (3 * countlg)) + c.bx / (1 << (2 * countlg)) + c.cx / (1 << countlg);
> + dy = c.ay / (1 << (3 * countlg)) + c.by / (1 << (2 * countlg)) + c.cy / (1 << countlg);
> +
> +- curves[idx+DDDX] = dddx;
> +- curves[idx+DDDY] = dddy;
> +- curves[idx+DDX] = ddx;
> +- curves[idx+DDY] = ddy;
> +- curves[idx+DX] = dx;
> +- curves[idx+DY] = dy;
> +- curves[idx+COUNT] = count;
> +- curves[idx+XL] = points[6];
> +- curves[idx+X0] = points[0];
> +- curves[idx+Y0] = points[1];
> +- executeCurveAFDIteration(idx);
> +- float x1 = curves[idx+X0], y1 = curves[idx+Y0];
> +- curves[idx+CURSLOPE] = (x1 - points[0]) / (y1 - points[1]);
> +- curves[idx+CURX] = points[0] + (curves[idx+CURY] - points[1])*curves[idx+CURSLOPE];
> +- }
> +-
> +- private void addPathSegment(float[] pts, final int type, final int or) {
> +- int idx;
> +- float[] addTo;
> +- switch (type) {
> +- case 4:
> +- idx = numEdges * SIZEOF_EDGE;
> +- addTo = edges = Helpers.widenArray(edges, numEdges*SIZEOF_EDGE, SIZEOF_EDGE);
> +- numEdges++;
> +- break;
> +- case 6:
> +- idx = numQuads * SIZEOF_QUAD;
> +- addTo = quads = Helpers.widenArray(quads, numQuads*SIZEOF_QUAD, SIZEOF_QUAD);
> +- numQuads++;
> +- break;
> +- case 8:
> +- idx = numCurves * SIZEOF_CURVE;
> +- addTo = curves = Helpers.widenArray(curves, numCurves*SIZEOF_CURVE, SIZEOF_CURVE);
> +- numCurves++;
> +- break;
> +- default:
> +- throw new InternalError();
> +- }
> +- // set the common fields, except CURX, for which we must know the kind
> +- // of curve. NOTE: this must be done before the type specific fields
> +- // are initialized, because those depend on the common ones.
> +- addTo[idx+YMIN] = pts[1];
> +- addTo[idx+YMAX] = pts[type-1];
> +- addTo[idx+OR] = or;
> +- addTo[idx+CURY] = (float)Math.ceil(pts[1]);
> +- switch (type) {
> +- case 4:
> +- initLine(idx, pts, or);
> +- break;
> +- case 6:
> +- initQuad(idx, pts, or);
> +- break;
> +- case 8:
> +- initCurve(idx, pts, or);
> +- break;
> +- default:
> +- throw new InternalError();
> +- }
> +- }
> +-
> +- // precondition: the curve in pts must be monotonic and increasing in y.
> +- private void somethingTo(float[] pts, final int type, final int or) {
> +- // NOTE: it's very important that we check for or >= 0 below (as
> +- // opposed to or == 1, or or > 0, or anything else). That's
> +- // because if we check for or==1, when the curve being added
> +- // is a horizontal line, or will be 0 so or==1 will be false and
> +- // x0 and y0 will be updated to pts[0] and pts[1] instead of pts[type-2]
> +- // and pts[type-1], which is the correct thing to do.
> +- this.x0 = or >= 0 ? pts[type - 2] : pts[0];
> +- this.y0 = or >= 0 ? pts[type - 1] : pts[1];
> +-
> +- float minY = pts[1], maxY = pts[type - 1];
> +- if (Math.ceil(minY) >= Math.ceil(maxY) ||
> +- Math.ceil(minY) >= boundsMaxY || maxY < boundsMinY)
> +- {
> ++ // we use x0, y0 to walk the line
> ++ float x1 = x0, y1 = y0;
> ++ while (count > 0) {
> ++ while (Math.abs(ddx) > DEC_BND || Math.abs(ddy) > DEC_BND) {
> ++ dddx /= 8;
> ++ dddy /= 8;
> ++ ddx = ddx/4 - dddx;
> ++ ddy = ddy/4 - dddy;
> ++ dx = (dx - ddx) / 2;
> ++ dy = (dy - ddy) / 2;
> ++ count <<= 1;
> ++ }
> ++ // can only do this on even "count" values, because we must divide count by 2
> ++ while (count % 2 == 0 && Math.abs(dx) <= INC_BND && Math.abs(dy) <= INC_BND) {
> ++ dx = 2 * dx + ddx;
> ++ dy = 2 * dy + ddy;
> ++ ddx = 4 * (ddx + dddx);
> ++ ddy = 4 * (ddy + dddy);
> ++ dddx = 8 * dddx;
> ++ dddy = 8 * dddy;
> ++ count >>= 1;
> ++ }
> ++ count--;
> ++ if (count > 0) {
> ++ x1 += dx;
> ++ dx += ddx;
> ++ ddx += dddx;
> ++ y1 += dy;
> ++ dy += ddy;
> ++ ddy += dddy;
> ++ } else {
> ++ x1 = x3;
> ++ y1 = y3;
> ++ }
> ++ addLine(x0, y0, x1, y1);
> ++ x0 = x1;
> ++ y0 = y1;
> ++ }
> ++ }
> ++
> ++ // Preconditions: y2 > y1 and the curve must cross some scanline
> ++ // i.e.: y1 <= y < y2 for some y such that boundsMinY <= y < boundsMaxY
> ++ private void addLine(float x1, float y1, float x2, float y2) {
> ++ float or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
> ++ if (y2 < y1) {
> ++ or = y2; // no need to declare a temp variable. We have or.
> ++ y2 = y1;
> ++ y1 = or;
> ++ or = x2;
> ++ x2 = x1;
> ++ x1 = or;
> ++ or = 0;
> ++ }
> ++ final int firstCrossing = Math.max((int) Math.ceil(y1), boundsMinY);
> ++ final int lastCrossing = Math.min((int)Math.ceil(y2), boundsMaxY);
> ++ if (firstCrossing >= lastCrossing) {
> + return;
> + }
> +
> +- if (minY < edgeMinY) { edgeMinY = minY; }
> +- if (maxY > edgeMaxY) { edgeMaxY = maxY; }
> ++ if (y1 < edgeMinY) { edgeMinY = y1; }
> ++ if (y2 > edgeMaxY) { edgeMaxY = y2; }
> ++
> ++ final float slope = (x2 - x1) / (y2 - y1);
> ++
> ++ if (slope > 0) { // <==> x1 < x2
> ++ if (x1 < edgeMinX) { edgeMinX = x1; }
> ++ if (x2 > edgeMaxX) { edgeMaxX = x2; }
> ++ } else {
> ++ if (x2 < edgeMinX) { edgeMinX = x2; }
> ++ if (x1 > edgeMaxX) { edgeMaxX = x1; }
> ++ }
> ++
> ++ final int ptr = numEdges * SIZEOF_EDGE;
> ++ edges = Helpers.widenArray(edges, ptr, SIZEOF_EDGE);
> ++ numEdges++;
> ++ edges[ptr+OR] = or;
> ++ edges[ptr+CURX] = x1 + (firstCrossing - y1) * slope;
> ++ edges[ptr+SLOPE] = slope;
> ++ edges[ptr+YMAX] = y2;
> ++ final int bucketIdx = firstCrossing - boundsMinY;
> ++ addEdgeToBucket(ptr, bucketIdx);
> ++ if (lastCrossing < boundsMaxY) {
> ++ edgeBucketCounts[lastCrossing - boundsMinY] |= 1;
> ++ }
> ++ }
> +
> +- int minXidx = (pts[0] < pts[type-2] ? 0 : type - 2);
> +- float minX = pts[minXidx];
> +- float maxX = pts[type - 2 - minXidx];
> +- if (minX < edgeMinX) { edgeMinX = minX; }
> +- if (maxX > edgeMaxX) { edgeMaxX = maxX; }
> +- addPathSegment(pts, type, or);
> ++ // preconditions: should not be called before the last line has been added
> ++ // to the edge list (even though it will return a correct answer at that
> ++ // point in time, it's not meant to be used that way).
> ++ private int getFirstScanLineCrossing() {
> ++ return Math.max(boundsMinY, (int)Math.ceil(edgeMinY));
> ++ }
> ++ private int getScanLineCrossingEnd() {
> ++ return Math.min(boundsMaxY, (int)Math.ceil(edgeMaxY));
> + }
> +
> + // END EDGE LIST
> +@@ -619,6 +365,10 @@
> + this.boundsMinY = pix_boundsY * SUBPIXEL_POSITIONS_Y;
> + this.boundsMaxX = (pix_boundsX + pix_boundsWidth) * SUBPIXEL_POSITIONS_X;
> + this.boundsMaxY = (pix_boundsY + pix_boundsHeight) * SUBPIXEL_POSITIONS_Y;
> ++
> ++ edgeBuckets = new int[boundsMaxY - boundsMinY];
> ++ java.util.Arrays.fill(edgeBuckets, NULL);
> ++ edgeBucketCounts = new int[edgeBuckets.length];
> + }
> +
> + private float tosubpixx(float pix_x) {
> +@@ -636,74 +386,34 @@
> + this.x0 = tosubpixx(pix_x0);
> + }
> +
> +- public void lineJoin() { /* do nothing */ }
> +-
> +- private final float[][] pts = new float[2][8];
> +- private final float[] ts = new float[4];
> +-
> +- private static void invertPolyPoints(float[] pts, int off, int type) {
> +- for (int i = off, j = off + type - 2; i < j; i += 2, j -= 2) {
> +- float tmp = pts[i];
> +- pts[i] = pts[j];
> +- pts[j] = tmp;
> +- tmp = pts[i+1];
> +- pts[i+1] = pts[j+1];
> +- pts[j+1] = tmp;
> +- }
> +- }
> +-
> +- // return orientation before making the curve upright.
> +- private static int makeMonotonicCurveUpright(float[] pts, int off, int type) {
> +- float y0 = pts[off + 1];
> +- float y1 = pts[off + type - 1];
> +- if (y0 > y1) {
> +- invertPolyPoints(pts, off, type);
> +- return -1;
> +- } else if (y0 < y1) {
> +- return 1;
> +- }
> +- return 0;
> +- }
> +-
> + public void lineTo(float pix_x1, float pix_y1) {
> +- pts[0][0] = x0; pts[0][1] = y0;
> +- pts[0][2] = tosubpixx(pix_x1); pts[0][3] = tosubpixy(pix_y1);
> +- int or = makeMonotonicCurveUpright(pts[0], 0, 4);
> +- somethingTo(pts[0], 4, or);
> ++ float x1 = tosubpixx(pix_x1);
> ++ float y1 = tosubpixy(pix_y1);
> ++ addLine(x0, y0, x1, y1);
> ++ x0 = x1;
> ++ y0 = y1;
> + }
> +
> + Curve c = new Curve();
> +- private void curveOrQuadTo(int type) {
> +- c.set(pts[0], type);
> +- int numTs = c.dxRoots(ts, 0);
> +- numTs += c.dyRoots(ts, numTs);
> +- numTs = Helpers.filterOutNotInAB(ts, 0, numTs, 0, 1);
> +- Helpers.isort(ts, 0, numTs);
> +-
> +- Iterator<float[]> it = Curve.breakPtsAtTs(pts, type, ts, numTs);
> +- while(it.hasNext()) {
> +- float[] curCurve = it.next();
> +- int or = makeMonotonicCurveUpright(curCurve, 0, type);
> +- somethingTo(curCurve, type, or);
> +- }
> +- }
> +-
> + public void curveTo(float x1, float y1,
> + float x2, float y2,
> + float x3, float y3)
> + {
> +- pts[0][0] = x0; pts[0][1] = y0;
> +- pts[0][2] = tosubpixx(x1); pts[0][3] = tosubpixy(y1);
> +- pts[0][4] = tosubpixx(x2); pts[0][5] = tosubpixy(y2);
> +- pts[0][6] = tosubpixx(x3); pts[0][7] = tosubpixy(y3);
> +- curveOrQuadTo(8);
> ++ final float xe = tosubpixx(x3);
> ++ final float ye = tosubpixy(y3);
> ++ c.set(x0, y0, tosubpixx(x1), tosubpixy(y1), tosubpixx(x2), tosubpixy(y2), xe, ye);
> ++ curveBreakIntoLinesAndAdd(x0, y0, c, xe, ye);
> ++ x0 = xe;
> ++ y0 = ye;
> + }
> +
> + public void quadTo(float x1, float y1, float x2, float y2) {
> +- pts[0][0] = x0; pts[0][1] = y0;
> +- pts[0][2] = tosubpixx(x1); pts[0][3] = tosubpixy(y1);
> +- pts[0][4] = tosubpixx(x2); pts[0][5] = tosubpixy(y2);
> +- curveOrQuadTo(6);
> ++ final float xe = tosubpixx(x2);
> ++ final float ye = tosubpixy(y2);
> ++ c.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
> ++ quadBreakIntoLinesAndAdd(x0, y0, c, xe, ye);
> ++ x0 = xe;
> ++ y0 = ye;
> + }
> +
> + public void closePath() {
> +@@ -715,8 +425,6 @@
> + closePath();
> + }
> +
> +-
> +-
> + public long getNativeConsumer() {
> + throw new InternalError("Renderer does not use a native consumer.");
> + }
> +@@ -728,9 +436,9 @@
> + // 0x1 if EVEN_ODD, all bits if NON_ZERO
> + int mask = (windingRule == WIND_EVEN_ODD) ? 0x1 : ~0x0;
> +
> +- // add 1 to better deal with the last pixel in a pixel row.
> +- int width = pix_bboxx1 - pix_bboxx0 + 1;
> +- int[] alpha = new int[width+1];
> ++ // add 2 to better deal with the last pixel in a pixel row.
> ++ int width = pix_bboxx1 - pix_bboxx0;
> ++ int[] alpha = new int[width+2];
> +
> + int bboxx0 = pix_bboxx0 << SUBPIXEL_LG_POSITIONS_X;
> + int bboxx1 = pix_bboxx1 << SUBPIXEL_LG_POSITIONS_X;
> +@@ -766,7 +474,8 @@
> + for (int i = 0; i < numCrossings; i++) {
> + int curxo = crossings[i];
> + int curx = curxo >> 1;
> +- int crorientation = ((curxo & 0x1) == 0x1) ? 1 : -1;
> ++ // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
> ++ int crorientation = ((curxo & 0x1) << 1) -1;
> + if ((sum & mask) != 0) {
> + int x0 = Math.max(prev, bboxx0);
> + int x1 = Math.min(curx, bboxx1);
> +@@ -811,26 +520,26 @@
> + }
> +
> + public void endRendering() {
> +- final int bminx = boundsMinX >> SUBPIXEL_LG_POSITIONS_X;
> +- final int bmaxx = boundsMaxX >> SUBPIXEL_LG_POSITIONS_X;
> +- final int bminy = boundsMinY >> SUBPIXEL_LG_POSITIONS_Y;
> +- final int bmaxy = boundsMaxY >> SUBPIXEL_LG_POSITIONS_Y;
> +- final int eminx = ((int)Math.floor(edgeMinX)) >> SUBPIXEL_LG_POSITIONS_X;
> +- final int emaxx = ((int)Math.ceil(edgeMaxX)) >> SUBPIXEL_LG_POSITIONS_X;
> +- final int eminy = ((int)Math.floor(edgeMinY)) >> SUBPIXEL_LG_POSITIONS_Y;
> +- final int emaxy = ((int)Math.ceil(edgeMaxY)) >> SUBPIXEL_LG_POSITIONS_Y;
> +-
> +- final int minX = Math.max(bminx, eminx);
> +- final int maxX = Math.min(bmaxx, emaxx);
> +- final int minY = Math.max(bminy, eminy);
> +- final int maxY = Math.min(bmaxy, emaxy);
> +- if (minX > maxX || minY > maxY) {
> +- this.cache = new PiscesCache(bminx, bminy, bmaxx, bmaxy);
> ++ int spminX = Math.max((int)Math.ceil(edgeMinX), boundsMinX);
> ++ int spmaxX = Math.min((int)Math.ceil(edgeMaxX), boundsMaxX);
> ++ int spminY = Math.max((int)Math.ceil(edgeMinY), boundsMinY);
> ++ int spmaxY = Math.min((int)Math.ceil(edgeMaxY), boundsMaxY);
> ++
> ++ int pminX = spminX >> SUBPIXEL_LG_POSITIONS_X;
> ++ int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
> ++ int pminY = spminY >> SUBPIXEL_LG_POSITIONS_Y;
> ++ int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
> ++
> ++ if (pminX > pmaxX || pminY > pmaxY) {
> ++ this.cache = new PiscesCache(boundsMinX >> SUBPIXEL_LG_POSITIONS_X,
> ++ boundsMinY >> SUBPIXEL_LG_POSITIONS_Y,
> ++ boundsMaxX >> SUBPIXEL_LG_POSITIONS_X,
> ++ boundsMaxY >> SUBPIXEL_LG_POSITIONS_Y);
> + return;
> + }
> +
> +- this.cache = new PiscesCache(minX, minY, maxX, maxY);
> +- _endRendering(minX, minY, maxX, maxY);
> ++ this.cache = new PiscesCache(pminX, pminY, pmaxX, pmaxY);
> ++ _endRendering(pminX, pminY, pmaxX, pmaxY);
> + }
> +
> + public PiscesCache getCache() {
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Stroker.java ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Stroker.java
> +--- ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Stroker.java 2011-02-04 11:09:54.298266201 -0500
> ++++ ./openjdk/jdk/src/share/classes/sun/java2d/pisces/Stroker.java 2011-02-04 11:13:02.477269895 -0500
> +@@ -1,5 +1,5 @@
> + /*
> +- * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
> ++ * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
> + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> + *
> + * This code is free software; you can redistribute it and/or modify it
> +@@ -33,7 +33,7 @@
> + // TODO: some of the arithmetic here is too verbose and prone to hard to
> + // debug typos. We should consider making a small Point/Vector class that
> + // has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
> +-public class Stroker implements PathConsumer2D {
> ++final class Stroker implements PathConsumer2D {
> +
> + private static final int MOVE_TO = 0;
> + private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
> +@@ -130,7 +130,7 @@
> + private static void computeOffset(final float lx, final float ly,
> + final float w, final float[] m)
> + {
> +- final float len = (float)Math.hypot(lx, ly);
> ++ final float len = (float)Math.sqrt(lx*lx + ly*ly);
> + if (len == 0) {
> + m[0] = m[1] = 0;
> + } else {
> +@@ -758,7 +758,7 @@
> + // This is where the curve to be processed is put. We give it
> + // enough room to store 2 curves: one for the current subdivision, the
> + // other for the rest of the curve.
> +- private float[][] middle = new float[2][8];
> ++ private float[] middle = new float[2*8];
> + private float[] lp = new float[8];
> + private float[] rp = new float[8];
> + private static final int MAX_N_CURVES = 11;
> +@@ -766,55 +766,55 @@
> +
> + private void somethingTo(final int type) {
> + // need these so we can update the state at the end of this method
> +- final float xf = middle[0][type-2], yf = middle[0][type-1];
> +- float dxs = middle[0][2] - middle[0][0];
> +- float dys = middle[0][3] - middle[0][1];
> +- float dxf = middle[0][type - 2] - middle[0][type - 4];
> +- float dyf = middle[0][type - 1] - middle[0][type - 3];
> ++ final float xf = middle[type-2], yf = middle[type-1];
> ++ float dxs = middle[2] - middle[0];
> ++ float dys = middle[3] - middle[1];
> ++ float dxf = middle[type - 2] - middle[type - 4];
> ++ float dyf = middle[type - 1] - middle[type - 3];
> + switch(type) {
> + case 6:
> + if ((dxs == 0f && dys == 0f) ||
> + (dxf == 0f && dyf == 0f)) {
> +- dxs = dxf = middle[0][4] - middle[0][0];
> +- dys = dyf = middle[0][5] - middle[0][1];
> ++ dxs = dxf = middle[4] - middle[0];
> ++ dys = dyf = middle[5] - middle[1];
> + }
> + break;
> + case 8:
> + boolean p1eqp2 = (dxs == 0f && dys == 0f);
> + boolean p3eqp4 = (dxf == 0f && dyf == 0f);
> + if (p1eqp2) {
> +- dxs = middle[0][4] - middle[0][0];
> +- dys = middle[0][5] - middle[0][1];
> ++ dxs = middle[4] - middle[0];
> ++ dys = middle[5] - middle[1];
> + if (dxs == 0f && dys == 0f) {
> +- dxs = middle[0][6] - middle[0][0];
> +- dys = middle[0][7] - middle[0][1];
> ++ dxs = middle[6] - middle[0];
> ++ dys = middle[7] - middle[1];
> + }
> + }
> + if (p3eqp4) {
> +- dxf = middle[0][6] - middle[0][2];
> +- dyf = middle[0][7] - middle[0][3];
> ++ dxf = middle[6] - middle[2];
> ++ dyf = middle[7] - middle[3];
> + if (dxf == 0f && dyf == 0f) {
> +- dxf = middle[0][6] - middle[0][0];
> +- dyf = middle[0][7] - middle[0][1];
> ++ dxf = middle[6] - middle[0];
> ++ dyf = middle[7] - middle[1];
> + }
> + }
> + }
> + if (dxs == 0f && dys == 0f) {
> + // this happens iff the "curve" is just a point
> +- lineTo(middle[0][0], middle[0][1]);
> ++ lineTo(middle[0], middle[1]);
> + return;
> + }
> + // if these vectors are too small, normalize them, to avoid future
> + // precision problems.
> + if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
> +- double len = Math.hypot(dxs, dys);
> +- dxs = (float)(dxs / len);
> +- dys = (float)(dys / len);
> ++ float len = (float)Math.sqrt(dxs*dxs + dys*dys);
> ++ dxs /= len;
> ++ dys /= len;
> + }
> + if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
> +- double len = Math.hypot(dxf, dyf);
> +- dxf = (float)(dxf / len);
> +- dyf = (float)(dyf / len);
> ++ float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
> ++ dxf /= len;
> ++ dyf /= len;
> + }
> +
> + computeOffset(dxs, dys, lineWidth2, offset[0]);
> +@@ -822,20 +822,20 @@
> + final float my = offset[0][1];
> + drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);
> +
> +- int nSplits = findSubdivPoints(middle[0], subdivTs, type,lineWidth2);
> ++ int nSplits = findSubdivPoints(middle, subdivTs, type, lineWidth2);
> +
> + int kind = 0;
> +- Iterator<float[]> it = Curve.breakPtsAtTs(middle, type, subdivTs, nSplits);
> ++ Iterator<Integer> it = Curve.breakPtsAtTs(middle, type, subdivTs, nSplits);
> + while(it.hasNext()) {
> +- float[] curCurve = it.next();
> ++ int curCurveOff = it.next();
> +
> + kind = 0;
> + switch (type) {
> + case 8:
> +- kind = computeOffsetCubic(curCurve, 0, lp, rp);
> ++ kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
> + break;
> + case 6:
> +- kind = computeOffsetQuad(curCurve, 0, lp, rp);
> ++ kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
> + break;
> + }
> + if (kind != 0) {
> +@@ -871,8 +871,7 @@
> + // to get good offset curves a distance of w away from the middle curve.
> + // Stores the points in ts, and returns how many of them there were.
> + private static Curve c = new Curve();
> +- private static int findSubdivPoints(float[] pts, float[] ts,
> +- final int type, final float w)
> ++ private static int findSubdivPoints(float[] pts, float[] ts, final int type, final float w)
> + {
> + final float x12 = pts[2] - pts[0];
> + final float y12 = pts[3] - pts[1];
> +@@ -919,6 +918,7 @@
> + // now we must subdivide at points where one of the offset curves will have
> + // a cusp. This happens at ts where the radius of curvature is equal to w.
> + ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001f);
> ++
> + ret = Helpers.filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f);
> + Helpers.isort(ts, 0, ret);
> + return ret;
> +@@ -928,10 +928,10 @@
> + float x2, float y2,
> + float x3, float y3)
> + {
> +- middle[0][0] = cx0; middle[0][1] = cy0;
> +- middle[0][2] = x1; middle[0][3] = y1;
> +- middle[0][4] = x2; middle[0][5] = y2;
> +- middle[0][6] = x3; middle[0][7] = y3;
> ++ middle[0] = cx0; middle[1] = cy0;
> ++ middle[2] = x1; middle[3] = y1;
> ++ middle[4] = x2; middle[5] = y2;
> ++ middle[6] = x3; middle[7] = y3;
> + somethingTo(8);
> + }
> +
> +@@ -940,9 +940,9 @@
> + }
> +
> + public void quadTo(float x1, float y1, float x2, float y2) {
> +- middle[0][0] = cx0; middle[0][1] = cy0;
> +- middle[0][2] = x1; middle[0][3] = y1;
> +- middle[0][4] = x2; middle[0][5] = y2;
> ++ middle[0] = cx0; middle[1] = cy0;
> ++ middle[2] = x1; middle[3] = y1;
> ++ middle[4] = x2; middle[5] = y2;
> + somethingTo(6);
> + }
> +
> +@@ -1037,7 +1037,6 @@
> + }
> + }
> +
> +-
> + public String toString() {
> + String ret = "";
> + int nc = numCurves;
> +diff -Nr --unified=3 ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java ./openjdk/jdk/src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java
> +--- ./openjdk.old/jdk/src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java 2011-02-04 11:09:54.298266201 -0500
> ++++ ./openjdk/jdk/src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java 2011-02-04 11:10:55.113151025 -0500
> +@@ -1,5 +1,5 @@
> + /*
> +- * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
> ++ * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
> + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> + *
> + * This code is free software; you can redistribute it and/or modify it
> +@@ -28,7 +28,7 @@
> + import sun.awt.geom.PathConsumer2D;
> + import java.awt.geom.AffineTransform;
> +
> +-public class TransformingPathConsumer2D {
> ++final class TransformingPathConsumer2D {
> + public static PathConsumer2D
> + transformConsumer(PathConsumer2D out,
> + AffineTransform at)
> +@@ -50,17 +50,72 @@
> + return new TranslateFilter(out, Mxt, Myt);
> + }
> + } else {
> +- return new ScaleFilter(out, Mxx, Myy, Mxt, Myt);
> ++ if (Mxt == 0f && Myt == 0f) {
> ++ return new DeltaScaleFilter(out, Mxx, Myy);
> ++ } else {
> ++ return new ScaleFilter(out, Mxx, Myy, Mxt, Myt);
> ++ }
> + }
> ++ } else if (Mxt == 0f && Myt == 0f) {
> ++ return new DeltaTransformFilter(out, Mxx, Mxy, Myx, Myy);
> + } else {
> + return new TransformFilter(out, Mxx, Mxy, Mxt, Myx, Myy, Myt);
> + }
> + }
> +
> +- static class TranslateFilter implements PathConsumer2D {
> +- PathConsumer2D out;
> +- float tx;
> +- float ty;
> ++ public static PathConsumer2D
> ++ deltaTransformConsumer(PathConsumer2D out,
> ++ AffineTransform at)
> ++ {
> ++ if (at == null) {
> ++ return out;
> ++ }
> ++ float Mxx = (float) at.getScaleX();
> ++ float Mxy = (float) at.getShearX();
> ++ float Myx = (float) at.getShearY();
> ++ float Myy = (float) at.getScaleY();
> ++ if (Mxy == 0f && Myx == 0f) {
> ++ if (Mxx == 1f && Myy == 1f) {
> ++ return out;
> ++ } else {
> ++ return new DeltaScaleFilter(out, Mxx, Myy);
> ++ }
> ++ } else {
> ++ return new DeltaTransformFilter(out, Mxx, Mxy, Myx, Myy);
> ++ }
> ++ }
> ++
> ++ public static PathConsumer2D
> ++ inverseDeltaTransformConsumer(PathConsumer2D out,
> ++ AffineTransform at)
> ++ {
> ++ if (at == null) {
> ++ return out;
> ++ }
> ++ float Mxx = (float) at.getScaleX();
> ++ float Mxy = (float) at.getShearX();
> ++ float Myx = (float) at.getShearY();
> ++ float Myy = (float) at.getScaleY();
> ++ if (Mxy == 0f && Myx == 0f) {
> ++ if (Mxx == 1f && Myy == 1f) {
> ++ return out;
> ++ } else {
> ++ return new DeltaScaleFilter(out, 1.0f/Mxx, 1.0f/Myy);
> ++ }
> ++ } else {
> ++ float det = Mxx * Myy - Mxy * Myx;
> ++ return new DeltaTransformFilter(out,
> ++ Myy / det,
> ++ -Mxy / det,
> ++ -Myx / det,
> ++ Mxx / det);
> ++ }
> ++ }
> ++
> ++ static final class TranslateFilter implements PathConsumer2D {
> ++ private final PathConsumer2D out;
> ++ private final float tx;
> ++ private final float ty;
> +
> + TranslateFilter(PathConsumer2D out,
> + float tx, float ty)
> +@@ -107,12 +162,12 @@
> + }
> + }
> +
> +- static class ScaleFilter implements PathConsumer2D {
> +- PathConsumer2D out;
> +- float sx;
> +- float sy;
> +- float tx;
> +- float ty;
> ++ static final class ScaleFilter implements PathConsumer2D {
> ++ private final PathConsumer2D out;
> ++ private final float sx;
> ++ private final float sy;
> ++ private final float tx;
> ++ private final float ty;
> +
> + ScaleFilter(PathConsumer2D out,
> + float sx, float sy, float tx, float ty)
> +@@ -161,14 +216,14 @@
> + }
> + }
> +
> +- static class TransformFilter implements PathConsumer2D {
> +- PathConsumer2D out;
> +- float Mxx;
> +- float Mxy;
> +- float Mxt;
> +- float Myx;
> +- float Myy;
> +- float Myt;
> ++ static final class TransformFilter implements PathConsumer2D {
> ++ private final PathConsumer2D out;
> ++ private final float Mxx;
> ++ private final float Mxy;
> ++ private final float Mxt;
> ++ private final float Myx;
> ++ private final float Myy;
> ++ private final float Myt;
> +
> + TransformFilter(PathConsumer2D out,
> + float Mxx, float Mxy, float Mxt,
> +@@ -226,4 +281,113 @@
> + return 0;
> + }
> + }
> ++
> ++ static final class DeltaScaleFilter implements PathConsumer2D {
> ++ private final float sx, sy;
> ++ private final PathConsumer2D out;
> ++
> ++ public DeltaScaleFilter(PathConsumer2D out, float Mxx, float Myy) {
> ++ sx = Mxx;
> ++ sy = Myy;
> ++ this.out = out;
> ++ }
> ++
> ++ public void moveTo(float x0, float y0) {
> ++ out.moveTo(x0 * sx, y0 * sy);
> ++ }
> ++
> ++ public void lineTo(float x1, float y1) {
> ++ out.lineTo(x1 * sx, y1 * sy);
> ++ }
> ++
> ++ public void quadTo(float x1, float y1,
> ++ float x2, float y2)
> ++ {
> ++ out.quadTo(x1 * sx, y1 * sy,
> ++ x2 * sx, y2 * sy);
> ++ }
> ++
> ++ public void curveTo(float x1, float y1,
> ++ float x2, float y2,
> ++ float x3, float y3)
> ++ {
> ++ out.curveTo(x1 * sx, y1 * sy,
> ++ x2 * sx, y2 * sy,
> ++ x3 * sx, y3 * sy);
> ++ }
> ++
> ++ public void closePath() {
> ++ out.closePath();
> ++ }
> ++
> ++ public void pathDone() {
> ++ out.pathDone();
> ++ }
> ++
> ++ public long getNativeConsumer() {
> ++ return 0;
> ++ }
> ++ }
> ++
> ++ static final class DeltaTransformFilter implements PathConsumer2D {
> ++ private PathConsumer2D out;
> ++ private final float Mxx;
> ++ private final float Mxy;
> ++ private final float Myx;
> ++ private final float Myy;
> ++
> ++ DeltaTransformFilter(PathConsumer2D out,
> ++ float Mxx, float Mxy,
> ++ float Myx, float Myy)
> ++ {
> ++ this.out = out;
> ++ this.Mxx = Mxx;
> ++ this.Mxy = Mxy;
> ++ this.Myx = Myx;
> ++ this.Myy = Myy;
> ++ }
> ++
> ++ public void moveTo(float x0, float y0) {
> ++ out.moveTo(x0 * Mxx + y0 * Mxy,
> ++ x0 * Myx + y0 * Myy);
> ++ }
> ++
> ++ public void lineTo(float x1, float y1) {
> ++ out.lineTo(x1 * Mxx + y1 * Mxy,
> ++ x1 * Myx + y1 * Myy);
> ++ }
> ++
> ++ public void quadTo(float x1, float y1,
> ++ float x2, float y2)
> ++ {
> ++ out.quadTo(x1 * Mxx + y1 * Mxy,
> ++ x1 * Myx + y1 * Myy,
> ++ x2 * Mxx + y2 * Mxy,
> ++ x2 * Myx + y2 * Myy);
> ++ }
> ++
> ++ public void curveTo(float x1, float y1,
> ++ float x2, float y2,
> ++ float x3, float y3)
> ++ {
> ++ out.curveTo(x1 * Mxx + y1 * Mxy,
> ++ x1 * Myx + y1 * Myy,
> ++ x2 * Mxx + y2 * Mxy,
> ++ x2 * Myx + y2 * Myy,
> ++ x3 * Mxx + y3 * Mxy,
> ++ x3 * Myx + y3 * Myy);
> ++ }
> ++
> ++ public void closePath() {
> ++ out.closePath();
> ++ }
> ++
> ++ public void pathDone() {
> ++ out.pathDone();
> ++ }
> ++
> ++ public long getNativeConsumer() {
> ++ return 0;
> ++ }
> ++ }
> + }
--
Andrew :)
Free Java Software Engineer
Red Hat, Inc. (http://www.redhat.com)
Support Free Java!
Contribute to GNU Classpath and IcedTea
http://www.gnu.org/software/classpath
http://icedtea.classpath.org
PGP Key: F5862A37 (https://keys.indymedia.org/)
Fingerprint = EA30 D855 D50F 90CD F54D 0698 0713 C3ED F586 2A37
More information about the distro-pkg-dev
mailing list