[External] : Re: SuperWord loop optimization lost after method inlining

Vladimir Kozlov vladimir.kozlov at oracle.com
Thu Feb 11 18:05:30 UTC 2021


Changing wide mailing list to JIT compiler only.

This deoptimization is normal in Tiered Compilation - it switched from profiling code (level='3') generated by C1 
compiler to new code generated by C2 (level='4') which does loop optimizations.

Thank you for posting inlining information:

     @ 17   com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding::plus (69 bytes) inline (hot)
        \-> TypeProfile (14054/14054 counts) = com/qfs/vector/binding/impl/ArrayFloatToArrayFloatVectorBinding

I thought before that may be call site is not hot but it is not the case.

You can do an other experiment to collect log with disabled Tiered Compilation (only C2 is used): -XX:-TieredCompilation
Also print assembler code (as you did before) for final compilation to see if loop is still not vectorized.

Is it possible to post log file (on GitHub?) for me to look?

Thanks,
Vladimir K

On 2/11/21 6:28 AM, Nicolas Heutte wrote:
> Hi Vladimir,
> 
> Thank you for your help.
> 
> I'm currently running Java 11.0.9, and I did not use any VM flag of note.
> 
> I checked the content of the compilation log, and it seems that ArrayFloatToArrayFloatVectorBinding::plus() was 
> deoptimized in order to allow AVector::plus() to be compiled:
> 
> <writer thread='11576'/>
> <task_queued compile_id='17280' method='com.qfs.vector.impl.AVector plus (Lcom/qfs/vector/IVector;)V' bytes='23' 
> count='916' iicount='916' level='3' stamp='7394.056' comment='tiered' hot_count='896'/>
> <writer thread='15784'/>
> <deoptimized thread='15784' reason='constraint' pc='0x00000296d0785b94' compile_id='17257' compiler='c1' level='3'>
> <jvms bci='65' method='com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding plus 
> (Lcom/qfs/vector/IVector;Lcom/qfs/vector/IVector;)V' bytes='69' count='909' backedge_count='155602' iicount='910'/>
> </deoptimized>
> 
> The last compilation entry for AVector::plus() is:
> 
> <writer thread='16380'/>
> <nmethod compile_id='17317' compiler='c2' level='4' entry='0x00000296d6af32c0' size='1960' address='0x00000296d6af3110' 
> relocation_offset='376' insts_offset='432' stub_offset='1040' scopes_data_offset='1152' scopes_pcs_offset='1592' 
> dependencies_offset='1880' nul_chk_table_offset='1896' oops_offset='1064' metadata_offset='1072' 
> method='com.qfs.vector.impl.AVector plus (Lcom/qfs/vector/IVector;)V' bytes='23' count='172425' iicount='172425' 
> stamp='7394.199'/>
> <make_not_entrant thread='16380' compile_id='17280' compiler='c1' level='2' stamp='7394.199'/>
>                                @ 1   com.qfs.vector.array.impl.ArrayFloatVector::getBindingId (4 bytes)   inline (hot)
>                                 \-> TypeProfile (14552/14552 counts) = com/qfs/vector/array/impl/ArrayFloatVector
>                                @ 7   com.qfs.vector.array.impl.ArrayFloatVector::getBindingId (4 bytes)   inline (hot)
>                                 \-> TypeProfile (14150/14150 counts) = com/qfs/vector/array/impl/ArrayFloatVector
>                                @ 10   com.qfs.vector.binding.impl.VectorBindings::getBinding (9 bytes)   inline (hot)
>                                  @ 5   com.qfs.vector.binding.impl.VectorBindings$VectorBindingsProvider::getBinding (22 
> bytes)   inline (hot)
>                                    @ 3   com.qfs.vector.binding.impl.VectorBindings$VectorBindingsProvider::hasBinding 
> (34 bytes)   inline (hot)
>                                @ 17   com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding::plus (69 bytes)   
> inline (hot)
>                                 \-> TypeProfile (14054/14054 counts) = 
> com/qfs/vector/binding/impl/ArrayFloatToArrayFloatVectorBinding
>                                  @ 12   com.qfs.vector.array.impl.ArrayFloatVector::size (6 bytes)   inline (hot)
>                                  @ 22   com.qfs.vector.impl.AVector::checkIndex (37 bytes)   inline (hot)
>                                    @ 6   com.qfs.vector.array.impl.ArrayFloatVector::size (6 bytes)   inline (hot)
>                                  @ 27   com.qfs.vector.array.impl.ArrayFloatVector::getUnderlying (5 bytes)   accessor
>                                  @ 34   com.qfs.vector.array.impl.ArrayFloatVector::getUnderlying (5 bytes)   accessor
> <writer thread='15896'/>
> 
> Unfortunately, I do not have access to a debug VM build, so I cannot run the second test you recommend.
> 
> Best regards,
> Nicolas Heutte
> 
> On Wed, Feb 10, 2021 at 7:36 PM Vladimir Kozlov <vladimir.kozlov at oracle.com <mailto:vladimir.kozlov at oracle.com>> wrote:
> 
>     Hi, Nicolas
> 
>     Looks like, when inlined, the loop from ArrayFloatToArrayFloatVectorBinding::plus() was not optimized at all: it is not
>     unrolled and has range checks. Such loops are not vectorized (you need unrolling and no checks).
> 
>     What Java version you are running? What HotSpot VM flags you are using when running application?
> 
>     Run application with -XX:+LogCompilation and look on compilation data in hotspot_pid<PID>.log file for caller
>     AVector::plus().
> 
>     VM also has several flags to trace loop optimizations but they are only available in debug VM build. If you have access
>     to such build run with -XX:+PrintCompilation -XX:+TraceLoopOpts flags.
> 
>     Thanks,
>     Vladimir K
> 
>     On 2/10/21 9:24 AM, Nicolas Heutte wrote:
>      > Hi all,
>      >
>      > I am encountering a performance issue caused by the interaction between
>      > method inlining and automatic vectorization.
>      >
>      > Our application aggregates arrays intensively using a method named
>      > ArrayFloatToArrayFloatVectorBinding.plus() with the following code:
>      >
>      >      for (int i = 0; i < srcLen; ++i) {
>      >
>      >              dstArray[i] += srcArray[i];
>      >
>      >      }
>      >
>      > When we microbenchmark this method we observe fast performance close to the
>      > practical memory bandwidth and when we print the assembly code we observe
>      > loop unrolling and automatic vectorization with SIMD instructions.
>      >
>      >    0x000001ef4600abf0: vmovdqu 0x10(%r14,%r13,4),%ymm0
>      >
>      >    0x000001ef4600abf7: vaddps 0x10(%rcx,%r13,4),%ymm0,%ymm0
>      >
>      >    0x000001ef4600abfe: vmovdqu %ymm0,0x10(%r14,%r13,4)
>      >
>      >    0x000001ef4600ac05: movslq %r13d,%r11
>      >
>      >    0x000001ef4600ac08: vmovdqu 0x30(%r14,%r11,4),%ymm0
>      >
>      >    0x000001ef4600ac0f: vaddps 0x30(%rcx,%r11,4),%ymm0,%ymm0
>      >
>      >    0x000001ef4600ac16: vmovdqu %ymm0,0x30(%r14,%r11,4)
>      >
>      >    0x000001ef4600ac1d: vmovdqu 0x50(%r14,%r11,4),%ymm0
>      >
>      >    0x000001ef4600ac24: vaddps 0x50(%rcx,%r11,4),%ymm0,%ymm0
>      >
>      >    0x000001ef4600ac2b: vmovdqu %ymm0,0x50(%r14,%r11,4)
>      >
>      >    0x000001ef4600ac32: vmovdqu 0x70(%r14,%r11,4),%ymm0
>      >
>      >    0x000001ef4600ac39: vaddps 0x70(%rcx,%r11,4),%ymm0,%ymm0
>      >
>      >    0x000001ef4600ac40: vmovdqu %ymm0,0x70(%r14,%r11,4)
>      >
>      >    0x000001ef4600ac47: vmovdqu 0x90(%r14,%r11,4),%ymm0
>      >
>      >    0x000001ef4600ac51: vaddps 0x90(%rcx,%r11,4),%ymm0,%ymm0
>      >
>      >    0x000001ef4600ac5b: vmovdqu %ymm0,0x90(%r14,%r11,4)
>      >
>      >    0x000001ef4600ac65: vmovdqu 0xb0(%r14,%r11,4),%ymm0
>      >
>      >    0x000001ef4600ac6f: vaddps 0xb0(%rcx,%r11,4),%ymm0,%ymm0
>      >
>      >    0x000001ef4600ac79: vmovdqu %ymm0,0xb0(%r14,%r11,4)
>      >
>      >    0x000001ef4600ac83: vmovdqu 0xd0(%r14,%r11,4),%ymm0
>      >
>      >    0x000001ef4600ac8d: vaddps 0xd0(%rcx,%r11,4),%ymm0,%ymm0
>      >
>      >    0x000001ef4600ac97: vmovdqu %ymm0,0xd0(%r14,%r11,4)
>      >
>      >    0x000001ef4600aca1: vmovdqu 0xf0(%r14,%r11,4),%ymm0
>      >
>      >    0x000001ef4600acab: vaddps 0xf0(%rcx,%r11,4),%ymm0,%ymm0
>      >
>      >    0x000001ef4600acb5: vmovdqu %ymm0,0xf0(%r14,%r11,4)  ;*fastore
>      > {reexecute=0 rethrow=0 return_oop=0}
>      >
>      >                                                  ; -
>      > com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding::plus at 61
>      > (line 41)
>      >
>      >    0x000001ef4600acbf: add    $0x40,%r13d        ;*iinc {reexecute=0
>      > rethrow=0 return_oop=0}
>      >
>      >                                                  ; -
>      > com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding::plus at 62
>      > (line 40)
>      >
>      >    0x000001ef4600acc3: cmp    %eax,%r13d
>      >
>      >    0x000001ef4600acc6: jl     0x000001ef4600abf0  ;*goto {reexecute=0
>      > rethrow=0 return_oop=0}
>      >
>      >                                                  ; -
>      > com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding::plus at 65
>      > (line 40)
>      >
>      >
>      >
>      > In the real application, this method is actually inlined in a higher level
>      > method named AVector.plus(). Unfortunately, the inlined version of the
>      > aggregation code is not vectorized anymore:
>      >
>      >
>      >
>      >    0x000001ef460180a0: cmp    %ebx,%r11d
>      >
>      >    0x000001ef460180a3: jae    0x000001ef460180e6
>      >
>      >    0x000001ef460180a5: vmovss 0x10(%r8,%r11,4),%xmm1  ;*faload {reexecute=0
>      > rethrow=0 return_oop=0}
>      >
>      >                                                  ; -
>      > com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding::plus at 54
>      > (line 41)
>      >
>      >                                                  ; -
>      > com.qfs.vector.impl.AVector::plus at 17 (line 204)
>      >
>      >    0x000001ef460180ac: cmp    %ecx,%r11d
>      >
>      >    0x000001ef460180af: jae    0x000001ef46018104
>      >
>      >    0x000001ef460180b1: vaddss 0x10(%r9,%r11,4),%xmm1,%xmm1
>      >
>      >    0x000001ef460180b8: vmovss %xmm1,0x10(%r8,%r11,4)  ;*fastore {reexecute=0
>      > rethrow=0 return_oop=0}
>      >
>      >                                                  ; -
>      > com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding::plus at 61
>      > (line 41)
>      >
>      >                                                  ; -
>      > com.qfs.vector.impl.AVector::plus at 17 (line 204)
>      >
>      >    0x000001ef460180bf: inc    %r11d              ;*iinc {reexecute=0
>      > rethrow=0 return_oop=0}
>      >
>      >                                                  ; -
>      > com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding::plus at 62
>      > (line 40)
>      >
>      >                                                  ; -
>      > com.qfs.vector.impl.AVector::plus at 17 (line 204)
>      >
>      >    0x000001ef460180c2: cmp    %r10d,%r11d
>      >
>      >    0x000001ef460180c5: jl     0x000001ef460180a0  ;*goto {reexecute=0
>      > rethrow=0 return_oop=0}
>      >
>      >                                                  ; -
>      > com.qfs.vector.binding.impl.ArrayFloatToArrayFloatVectorBinding::plus at 65
>      > (line 40)
>      >
>      >                                                  ; -
>      > com.qfs.vector.impl.AVector::plus at 17 (line 204)
>      >
>      >
>      >
>      > This causes a significant performance drop, compared to a run where we
>      > explicitly disable the inlining and observe automatically vectorized code
>      > again (
>      > -XX:CompileCommand=dontinline,com/qfs/vector/binding/impl/ArrayFloatToArrayFloatVectorBinding.plus
>      > ).
>      >
>      >
>      > How do you guys explain that behavior of the JIT compiler? Is this a known
>      > and tracked issue, could it be fixed in the JVM? Can we do something in the
>      > java code to prevent this from happening?
>      >
>      >
>      > Best regards,
>      >
>      > Nicolas Heutte
>      >
> 


More information about the hotspot-compiler-dev mailing list