RFR: 8293198: [vectorapi] Improve the implementation of VectorMask.indexInRange()

Xiaohong Gong xgong at openjdk.org
Thu Feb 2 01:42:25 UTC 2023


On Wed, 1 Feb 2023 13:22:07 GMT, Jatin Bhateja <jbhateja at openjdk.org> wrote:

>> The Vector API `"indexInRange(int offset, int limit)"` is used
>> to compute a vector mask whose lanes are set to true if the
>> index of the lane is inside the range specified by the `"offset"`
>> and `"limit"` arguments, otherwise the lanes are set to false.
>> 
>> There are two special cases for this API:
>>  1) If `"offset >= 0 && offset >= limit"`, all the lanes of the
>> generated mask are false.
>>  2) If` "offset >= 0 && limit - offset >= vlength"`, all the
>> lanes of the generated mask are true. Note that `"vlength"` is
>> the number of vector lanes.
>> 
>> For such special cases, we can simply use `"maskAll(false|true)"`
>> to implement the API. Otherwise, the original comparison with
>> `"iota" `vector is needed. And for further optimization, we have
>> optimal instruction supported by SVE (i.e. whilelo [1]), which
>> can implement the API directly if the `"offset >= 0"`.
>> 
>> As a summary, to optimize the API, we can use the if-else branches
>> to handle the specific cases in java level and intrinsify the
>> remaining case by C2 compiler:
>> 
>> 
>>   public VectorMask<E> indexInRange(int offset, int limit) {
>>       if (offset < 0) {
>>           return this.and(indexInRange0Helper(offset, limit));
>>       } else if (offset >= limit) {
>>           return this.and(vectorSpecies().maskAll(false));
>>       } else if (limit - offset >= length()) {
>>           return this.and(vectorSpecies().maskAll(true));
>>       }
>>       return this.and(indexInRange0(offset, limit));
>>  }
>> 
>> 
>> The last part (i.e. `"indexInRange0"`) in the above implementation
>> is expected to be intrinsified by C2 compiler if the necessary IRs
>> are supported. Otherwise, it will fall back to the original API
>> implementation (i.e. `"indexInRange0Helper"`). Regarding to the
>> intrinsifaction, the compiler will generate `"VectorMaskGen"` IR
>> with "limit - offset" as the input if the current platform supports
>> it. Otherwise, it generates `"VectorLoadConst + VectorMaskCmp"` based
>> on `"iota < limit - offset"`.
>> 
>> For the following java code which uses `"indexInRange"`:
>> 
>> 
>> static final VectorSpecies<Double> SPECIES =
>>                                    DoubleVector.SPECIES_PREFERRED;
>> static final int LENGTH = 1027;
>> 
>> public static double[] da;
>> public static double[] db;
>> public static double[] dc;
>> 
>> private static void func() {
>>     for (int i = 0; i < LENGTH; i += SPECIES.length()) {
>>         var m = SPECIES.indexInRange(i, LENGTH);
>>         var av = DoubleVector.fromArray(SPECIES, da, i, m);
>>         av.lanewise(VectorOperators.NEG).intoArray(dc, i, m);
>>     }
>> }
>> 
>> 
>> The core code generated with SVE 256-bit vector size is:
>> 
>> 
>>   ptrue   p2.d                  ; maskAll(true)
>>   ...
>> LOOP:
>>   ...
>>   sub     w11, w13, w14         ; limit - offset
>>   cmp     w14, w13
>>   b.cs    LABEL-1               ; if (offset >= limit) => uncommon-trap
>>   cmp     w11, #0x4
>>   b.lt    LABEL-2               ; if (limit - offset < vlength)
>>   mov     p1.b, p2.b
>> LABEL-3:
>>   ld1d    {z16.d}, p1/z, [x10]  ; load vector masked
>>   ...
>>   cmp     w14, w29
>>   b.cc    LOOP
>>   ...
>> LABEL-2:
>>   whilelo p1.d, x16, x10        ; VectorMaskGen
>>   ...
>>   b       LABEL-3
>>   ...
>> LABEL-1:
>>   uncommon-trap
>> 
>> 
>> Please note that if the array size `LENGTH` is aligned with
>> the vector size 256 (i.e. `LENGTH = 1024`), the branch "LABEL-2"
>> will be optimized out by compiler and it becomes another
>> uncommon-trap.
>> 
>> For NEON, the main CFG is the same with above. But the compiler
>> intrinsification is different. Here is the code:
>> 
>> 
>>   sub     x10, x10, x12          ; limit - offset
>>   scvtf   d16, x10
>>   dup     v16.2d, v16.d[0]       ; replicateD
>> 
>>   mov     x8, #0xd8d0
>>   movk    x8, #0x84cb, lsl #16
>>   movk    x8, #0xffff, lsl #32
>>   ldr     q17, [x8], #0          ; load the "iota" const vector
>>   fcmgt   v18.2d, v16.2d, v17.2d ; mask = iota < limit - offset
>> 
>> 
>> Here is the performance data of the new added benchmark on an ARM
>> SVE 256-bit platform:
>> 
>> 
>> Benchmark                               (size)  Before    After   Units
>> IndexInRangeBenchmark.byteIndexInRange   1024 11203.697 41404.431 ops/ms
>> IndexInRangeBenchmark.byteIndexInRange   1027  2365.920  8747.004 ops/ms
>> IndexInRangeBenchmark.doubleIndexInRange 1024  1227.505  6092.194 ops/ms
>> IndexInRangeBenchmark.doubleIndexInRange 1027   351.215  1156.683 ops/ms
>> IndexInRangeBenchmark.floatIndexInRange  1024  1468.876 11032.580 ops/ms
>> IndexInRangeBenchmark.floatIndexInRange  1027   699.645  2439.671 ops/ms
>> IndexInRangeBenchmark.intIndexInRange    1024  2842.187 11903.544 ops/ms
>> IndexInRangeBenchmark.intIndexInRange    1027   689.866  2547.424 ops/ms
>> IndexInRangeBenchmark.longIndexInRange   1024  1394.135  5902.973 ops/ms
>> IndexInRangeBenchmark.longIndexInRange   1027   355.621  1189.458 ops/ms
>> IndexInRangeBenchmark.shortIndexInRange  1024  5521.468 21578.340 ops/ms
>> IndexInRangeBenchmark.shortIndexInRange  1027  1264.816  4640.504 ops/ms
>> 
>> 
>> And the performance data with ARM NEON:
>> 
>> 
>> Benchmark                               (size)  Before    After   Units
>> IndexInRangeBenchmark.byteIndexInRange   1024  4026.548 15562.880 ops/ms
>> IndexInRangeBenchmark.byteIndexInRange   1027   305.314   576.559 ops/ms
>> IndexInRangeBenchmark.doubleIndexInRange 1024   289.224  2244.080 ops/ms
>> IndexInRangeBenchmark.doubleIndexInRange 1027    39.740    76.499 ops/ms
>> IndexInRangeBenchmark.floatIndexInRange  1024   675.264  4457.470 ops/ms
>> IndexInRangeBenchmark.floatIndexInRange  1027    79.918   144.952 ops/ms
>> IndexInRangeBenchmark.intIndexInRange    1024   740.139  4014.583 ops/ms
>> IndexInRangeBenchmark.intIndexInRange    1027    78.608   147.903 ops/ms
>> IndexInRangeBenchmark.longIndexInRange   1024   400.683  2209.551 ops/ms
>> IndexInRangeBenchmark.longIndexInRange   1027    41.146    69.599 ops/ms
>> IndexInRangeBenchmark.shortIndexInRange  1024  1821.736  8153.546 ops/ms
>> IndexInRangeBenchmark.shortIndexInRange  1027   158.810   243.205 ops/ms
>> 
>> 
>> The performance improves about `3.5x ~ 7.5x` on the vector size aligned
>> (1024 size) benchmarks both with NEON and SVE. And it improves about
>> `3.5x/1.8x` on the vector size not aligned (1027 size) benchmarks with
>> SVE/NEON respectively. We can also observe the similar improvement on
>> the x86 platforms.
>> 
>> [1] https://developer.arm.com/documentation/ddi0596/2020-12/SVE-Instructions/WHILELO--While-incrementing-unsigned-scalar-lower-than-scalar-
>
> src/jdk.incubator.vector/share/classes/jdk/incubator/vector/AbstractMask.java line 239:
> 
>> 237:             return this;
>> 238:         }
>> 239:         return this.and(indexInRange0(offset, limit));
> 
> Not related to this patch, but I also see a possibility of following ideal transformations:-
>         maskAll(true).allTrue() => true 
>         maskAll(false).anyTrue() => false

Agree! Maybe we could create another PR to handle these optimization in JIT-compiler.

-------------

PR: https://git.openjdk.org/jdk/pull/12064


More information about the hotspot-compiler-dev mailing list