RFR: 8282664: Unroll by hand StringUTF16 and StringLatin1 polynomial hash loops [v18]

Claes Redestad redestad at openjdk.org
Mon Jan 9 16:49:25 UTC 2023


> Continuing the work initiated by @luhenry to unroll and then intrinsify polynomial hash loops.
> 
> I've rewired the library changes to route via a single `@IntrinsicCandidate` method. To make this work I've harmonized how they are invoked so that there's less special handling and checks in the intrinsic. Mainly do the null-check outside of the intrinsic for `Arrays.hashCode` cases.
> 
> Having a centralized entry point means it'll be easier to parameterize the factor and start values which are now hard-coded (always 31, and a start value of either one for `Arrays` or zero for `String`). It seems somewhat premature to parameterize this up front.
> 
> The current implementation is performance neutral on microbenchmarks on all tested platforms (x64, aarch64) when not enabling the intrinsic. We do add a few trivial method calls which increase the call stack depth, so surprises cannot be ruled out on complex workloads.
> 
> With the most recent fixes the x64 intrinsic results on my workstation look like this:
> 
> Benchmark                               (size)  Mode  Cnt     Score    Error  Units
> StringHashCode.Algorithm.defaultLatin1       1  avgt    5     2.199 ±  0.017  ns/op
> StringHashCode.Algorithm.defaultLatin1      10  avgt    5     6.933 ±  0.049  ns/op
> StringHashCode.Algorithm.defaultLatin1     100  avgt    5    29.935 ±  0.221  ns/op
> StringHashCode.Algorithm.defaultLatin1   10000  avgt    5  1596.982 ±  7.020  ns/op
> 
> Baseline:
> 
> Benchmark                               (size)  Mode  Cnt     Score    Error  Units
> StringHashCode.Algorithm.defaultLatin1       1  avgt    5     2.200 ±  0.013  ns/op
> StringHashCode.Algorithm.defaultLatin1      10  avgt    5     9.424 ±  0.122  ns/op
> StringHashCode.Algorithm.defaultLatin1     100  avgt    5    90.541 ±  0.512  ns/op
> StringHashCode.Algorithm.defaultLatin1   10000  avgt    5  9425.321 ± 67.630  ns/op
> 
> I.e. no measurable overhead compared to baseline even for `size == 1`.
> 
> The vectorized code now nominally works for all unsigned cases as well as ints, though more testing would be good.
> 
> Benchmark for `Arrays.hashCode`:
> 
> Benchmark              (size)  Mode  Cnt     Score    Error  Units
> ArraysHashCode.bytes        1  avgt    5     1.884 ±  0.013  ns/op
> ArraysHashCode.bytes       10  avgt    5     6.955 ±  0.040  ns/op
> ArraysHashCode.bytes      100  avgt    5    87.218 ±  0.595  ns/op
> ArraysHashCode.bytes    10000  avgt    5  9419.591 ± 38.308  ns/op
> ArraysHashCode.chars        1  avgt    5     2.200 ±  0.010  ns/op
> ArraysHashCode.chars       10  avgt    5     6.935 ±  0.034  ns/op
> ArraysHashCode.chars      100  avgt    5    30.216 ±  0.134  ns/op
> ArraysHashCode.chars    10000  avgt    5  1601.629 ±  6.418  ns/op
> ArraysHashCode.ints         1  avgt    5     2.200 ±  0.007  ns/op
> ArraysHashCode.ints        10  avgt    5     6.936 ±  0.034  ns/op
> ArraysHashCode.ints       100  avgt    5    29.412 ±  0.268  ns/op
> ArraysHashCode.ints     10000  avgt    5  1610.578 ±  7.785  ns/op
> ArraysHashCode.shorts       1  avgt    5     1.885 ±  0.012  ns/op
> ArraysHashCode.shorts      10  avgt    5     6.961 ±  0.034  ns/op
> ArraysHashCode.shorts     100  avgt    5    87.095 ±  0.417  ns/op
> ArraysHashCode.shorts   10000  avgt    5  9420.617 ± 50.089  ns/op
> 
> Baseline:
> 
> Benchmark              (size)  Mode  Cnt     Score    Error  Units
> ArraysHashCode.bytes        1  avgt    5     3.213 ±  0.207  ns/op
> ArraysHashCode.bytes       10  avgt    5     8.483 ±  0.040  ns/op
> ArraysHashCode.bytes      100  avgt    5    90.315 ±  0.655  ns/op
> ArraysHashCode.bytes    10000  avgt    5  9422.094 ± 62.402  ns/op
> ArraysHashCode.chars        1  avgt    5     3.040 ±  0.066  ns/op
> ArraysHashCode.chars       10  avgt    5     8.497 ±  0.074  ns/op
> ArraysHashCode.chars      100  avgt    5    90.074 ±  0.387  ns/op
> ArraysHashCode.chars    10000  avgt    5  9420.474 ± 41.619  ns/op
> ArraysHashCode.ints         1  avgt    5     2.827 ±  0.019  ns/op
> ArraysHashCode.ints        10  avgt    5     7.727 ±  0.043  ns/op
> ArraysHashCode.ints       100  avgt    5    89.405 ±  0.593  ns/op
> ArraysHashCode.ints     10000  avgt    5  9426.539 ± 51.308  ns/op
> ArraysHashCode.shorts       1  avgt    5     3.071 ±  0.062  ns/op
> ArraysHashCode.shorts      10  avgt    5     8.168 ±  0.049  ns/op
> ArraysHashCode.shorts     100  avgt    5    90.399 ±  0.292  ns/op
> ArraysHashCode.shorts   10000  avgt    5  9420.171 ± 44.474  ns/op
> 
> 
> As we can see the `Arrays` intrinsics are faster for small inputs, and faster on large inputs for `char` and `int` (the ones currently vectorized). I aim to fix `byte` and `short` cases before integrating, though it might be acceptable to hand that off as follow-up enhancements to not further delay integration of this enhancement.

Claes Redestad has updated the pull request incrementally with one additional commit since the last revision:

  Explicitly lea external address

-------------

Changes:
  - all: https://git.openjdk.org/jdk/pull/10847/files
  - new: https://git.openjdk.org/jdk/pull/10847/files/71297615..c8c58f4a

Webrevs:
 - full: https://webrevs.openjdk.org/?repo=jdk&pr=10847&range=17
 - incr: https://webrevs.openjdk.org/?repo=jdk&pr=10847&range=16-17

  Stats: 11 lines in 1 file changed: 6 ins; 3 del; 2 mod
  Patch: https://git.openjdk.org/jdk/pull/10847.diff
  Fetch: git fetch https://git.openjdk.org/jdk pull/10847/head:pull/10847

PR: https://git.openjdk.org/jdk/pull/10847


More information about the hotspot-compiler-dev mailing list