RFR: 8293198: [vectorapi] Improve the implementation of VectorMask.indexInRange()
Quan Anh Mai
qamai at openjdk.org
Thu Jan 19 03:40:28 UTC 2023
On Wed, 18 Jan 2023 08:58:42 GMT, Xiaohong Gong <xgong at openjdk.org> wrote:
> The Vector API `"indexInRange(int offset, int limit)"` is used
> to compute a vector mask whose lanes are set to true if the
> index of the lane is inside the range specified by the `"offset"`
> and `"limit"` arguments, otherwise the lanes are set to false.
>
> There are two special cases for this API:
> 1) If `"offset >= 0 && offset >= limit"`, all the lanes of the
> generated mask are false.
> 2) If` "offset >= 0 && limit - offset >= vlength"`, all the
> lanes of the generated mask are true. Note that `"vlength"` is
> the number of vector lanes.
>
> For such special cases, we can simply use `"maskAll(false|true)"`
> to implement the API. Otherwise, the original comparison with
> `"iota" `vector is needed. And for further optimization, we have
> optimal instruction supported by SVE (i.e. whilelo [1]), which
> can implement the API directly if the `"offset >= 0"`.
>
> As a summary, to optimize the API, we can use the if-else branches
> to handle the specific cases in java level and intrinsify the
> remaining case by C2 compiler:
>
>
> public VectorMask<E> indexInRange(int offset, int limit) {
> if (offset < 0) {
> return this.and(indexInRange0Helper(offset, limit));
> } else if (offset >= limit) {
> return this.and(vectorSpecies().maskAll(false));
> } else if (limit - offset >= length()) {
> return this.and(vectorSpecies().maskAll(true));
> }
> return this.and(indexInRange0(offset, limit));
> }
>
>
> The last part (i.e. `"indexInRange0"`) in the above implementation
> is expected to be intrinsified by C2 compiler if the necessary IRs
> are supported. Otherwise, it will fall back to the original API
> implementation (i.e. `"indexInRange0Helper"`). Regarding to the
> intrinsifaction, the compiler will generate `"VectorMaskGen"` IR
> with "limit - offset" as the input if the current platform supports
> it. Otherwise, it generates `"VectorLoadConst + VectorMaskCmp"` based
> on `"iota < limit - offset"`.
>
> For the following java code which uses `"indexInRange"`:
>
>
> static final VectorSpecies<Double> SPECIES =
> DoubleVector.SPECIES_PREFERRED;
> static final int LENGTH = 1027;
>
> public static double[] da;
> public static double[] db;
> public static double[] dc;
>
> private static void func() {
> for (int i = 0; i < LENGTH; i += SPECIES.length()) {
> var m = SPECIES.indexInRange(i, LENGTH);
> var av = DoubleVector.fromArray(SPECIES, da, i, m);
> av.lanewise(VectorOperators.NEG).intoArray(dc, i, m);
> }
> }
>
>
> The core code generated with SVE 256-bit vector size is:
>
>
> ptrue p2.d ; maskAll(true)
> ...
> LOOP:
> ...
> sub w11, w13, w14 ; limit - offset
> cmp w14, w13
> b.cs LABEL-1 ; if (offset >= limit) => uncommon-trap
> cmp w11, #0x4
> b.lt LABEL-2 ; if (limit - offset < vlength)
> mov p1.b, p2.b
> LABEL-3:
> ld1d {z16.d}, p1/z, [x10] ; load vector masked
> ...
> cmp w14, w29
> b.cc LOOP
> ...
> LABEL-2:
> whilelo p1.d, x16, x10 ; VectorMaskGen
> ...
> b LABEL-3
> ...
> LABEL-1:
> uncommon-trap
>
>
> Please note that if the array size `LENGTH` is aligned with
> the vector size 256 (i.e. `LENGTH = 1024`), the branch "LABEL-2"
> will be optimized out by compiler and it becomes another
> uncommon-trap.
>
> For NEON, the main CFG is the same with above. But the compiler
> intrinsification is different. Here is the code:
>
>
> sub x10, x10, x12 ; limit - offset
> scvtf d16, x10
> dup v16.2d, v16.d[0] ; replicateD
>
> mov x8, #0xd8d0
> movk x8, #0x84cb, lsl #16
> movk x8, #0xffff, lsl #32
> ldr q17, [x8], #0 ; load the "iota" const vector
> fcmgt v18.2d, v16.2d, v17.2d ; mask = iota < limit - offset
>
>
> Here is the performance data of the new added benchmark on an ARM
> SVE 256-bit platform:
>
>
> Benchmark (size) Before After Units
> IndexInRangeBenchmark.byteIndexInRange 1024 11203.697 41404.431 ops/ms
> IndexInRangeBenchmark.byteIndexInRange 1027 2365.920 8747.004 ops/ms
> IndexInRangeBenchmark.doubleIndexInRange 1024 1227.505 6092.194 ops/ms
> IndexInRangeBenchmark.doubleIndexInRange 1027 351.215 1156.683 ops/ms
> IndexInRangeBenchmark.floatIndexInRange 1024 1468.876 11032.580 ops/ms
> IndexInRangeBenchmark.floatIndexInRange 1027 699.645 2439.671 ops/ms
> IndexInRangeBenchmark.intIndexInRange 1024 2842.187 11903.544 ops/ms
> IndexInRangeBenchmark.intIndexInRange 1027 689.866 2547.424 ops/ms
> IndexInRangeBenchmark.longIndexInRange 1024 1394.135 5902.973 ops/ms
> IndexInRangeBenchmark.longIndexInRange 1027 355.621 1189.458 ops/ms
> IndexInRangeBenchmark.shortIndexInRange 1024 5521.468 21578.340 ops/ms
> IndexInRangeBenchmark.shortIndexInRange 1027 1264.816 4640.504 ops/ms
>
>
> And the performance data with ARM NEON:
>
>
> Benchmark (size) Before After Units
> IndexInRangeBenchmark.byteIndexInRange 1024 4026.548 15562.880 ops/ms
> IndexInRangeBenchmark.byteIndexInRange 1027 305.314 576.559 ops/ms
> IndexInRangeBenchmark.doubleIndexInRange 1024 289.224 2244.080 ops/ms
> IndexInRangeBenchmark.doubleIndexInRange 1027 39.740 76.499 ops/ms
> IndexInRangeBenchmark.floatIndexInRange 1024 675.264 4457.470 ops/ms
> IndexInRangeBenchmark.floatIndexInRange 1027 79.918 144.952 ops/ms
> IndexInRangeBenchmark.intIndexInRange 1024 740.139 4014.583 ops/ms
> IndexInRangeBenchmark.intIndexInRange 1027 78.608 147.903 ops/ms
> IndexInRangeBenchmark.longIndexInRange 1024 400.683 2209.551 ops/ms
> IndexInRangeBenchmark.longIndexInRange 1027 41.146 69.599 ops/ms
> IndexInRangeBenchmark.shortIndexInRange 1024 1821.736 8153.546 ops/ms
> IndexInRangeBenchmark.shortIndexInRange 1027 158.810 243.205 ops/ms
>
>
> The performance improves about `3.5x ~ 7.5x` on the vector size aligned
> (1024 size) benchmarks both with NEON and SVE. And it improves about
> `3.5x/1.8x` on the vector size not aligned (1027 size) benchmarks with
> SVE/NEON respectively. We can also observe the similar improvement on
> the x86 platforms.
>
> [1] https://developer.arm.com/documentation/ddi0596/2020-12/SVE-Instructions/WHILELO--While-incrementing-unsigned-scalar-lower-than-scalar-
src/jdk.incubator.vector/share/classes/jdk/incubator/vector/AbstractMask.java line 219:
> 217: @ForceInline
> 218: public VectorMask<E> indexInRange(int offset, int limit) {
> 219: if (offset < 0) {
These fast-paths penalise every usage of `VectorMask::indexInRange`, especially the common use case of tail processing an array. So I don't think it is needed, the user can implement it themselves if their use cases find it beneficial. Thanks.
-------------
PR: https://git.openjdk.org/jdk/pull/12064
More information about the hotspot-compiler-dev
mailing list