RFR: 8343689: AArch64: Optimize MulReduction implementation [v4]

Mikhail Ablakatov mablakatov at openjdk.org
Mon Jun 30 13:25:09 UTC 2025


> Add a reduce_mul intrinsic SVE specialization for >= 256-bit long vectors. It multiplies halves of the source vector using SVE instructions to get to a 128-bit long vector that fits into a SIMD&FP register. After that point, existing ASIMD implementation is used.
> 
> Nothing changes for <= 128-bit long vectors as for those the existing ASIMD implementation is used directly still.
> 
> The benchmarks below are from [panama-vector/vectorIntrinsics:test/micro/org/openjdk/bench/jdk/incubator/vector/operation](https://github.com/openjdk/panama-vector/tree/vectorIntrinsics/test/micro/org/openjdk/bench/jdk/incubator/vector/operation). To the best of my knowledge, openjdk/jdk is missing VectorAPI reducion micro-benchmarks.
> 
> Benchmarks results:
> 
> Neoverse-V1 (SVE 256-bit)
> 
>   Benchmark                 (size)   Mode   master         PR  Units
>   ByteMaxVector.MULLanes      1024  thrpt 5447.643  11455.535 ops/ms
>   ShortMaxVector.MULLanes     1024  thrpt 3388.183   7144.301 ops/ms
>   IntMaxVector.MULLanes       1024  thrpt 3010.974   4911.485 ops/ms
>   LongMaxVector.MULLanes      1024  thrpt 1539.137   2562.835 ops/ms
>   FloatMaxVector.MULLanes     1024  thrpt 1355.551   4158.128 ops/ms
>   DoubleMaxVector.MULLanes    1024  thrpt 1715.854   3284.189 ops/ms
> 
> 
> Fujitsu A64FX (SVE 512-bit):
> 
>   Benchmark                 (size)   Mode   master         PR  Units
>   ByteMaxVector.MULLanes      1024  thrpt 1091.692   2887.798 ops/ms
>   ShortMaxVector.MULLanes     1024  thrpt  597.008   1863.338 ops/ms
>   IntMaxVector.MULLanes       1024  thrpt  510.642   1348.651 ops/ms
>   LongMaxVector.MULLanes      1024  thrpt  468.878    878.620 ops/ms
>   FloatMaxVector.MULLanes     1024  thrpt  376.284   2237.564 ops/ms
>   DoubleMaxVector.MULLanes    1024  thrpt  431.343   1646.792 ops/ms

Mikhail Ablakatov has updated the pull request with a new target base due to a merge or a rebase. The pull request now contains eight commits:

 - cleanup: address nits, rename several symbols
 - cleanup: remove unreferenced definitions
 - Address review comments.
   
   - fixup: disable FP mul reduction auto-vectorization for all targets
   - fixup: add a tmp vReg to reduce_mul_integral_gt128b and
     reduce_non_strict_order_mul_fp_gt128bto keep vsrc unmodified
   - cleanup: replace a complex lambda in the above methods with a loop
   - cleanup: rename symbols to follow the existing naming convention
   - cleanup: add asserts to SVE only instructions
   - split mul FP reduction instructions into strictly-ordered (default)
     and explicitly non strictly-ordered
   - remove redundant conditions in TestVectorFPReduction.java
   
   Benchmarks results:
   
   Neoverse-V1 (SVE 256-bit)
   
   | Benchmark                 | Before   | After    | Units  | Diff  |
   |---------------------------|----------|----------|--------|-------|
   | ByteMaxVector.MULLanes    | 619.156  | 9884.578 | ops/ms | 1496% |
   | DoubleMaxVector.MULLanes  | 184.693  | 2712.051 | ops/ms | 1368% |
   | FloatMaxVector.MULLanes   | 277.818  | 3388.038 | ops/ms | 1119% |
   | IntMaxVector.MULLanes     | 371.225  | 4765.434 | ops/ms | 1183% |
   | LongMaxVector.MULLanes    | 205.149  | 2672.975 | ops/ms | 1203% |
   | ShortMaxVector.MULLanes   | 472.804  | 5122.917 | ops/ms |  984% |
 - Merge branch 'master' into 8343689-rebase
 - fixup: don't modify the value in vsrc
   
   Fix reduce_mul_integral_gt128b() so it doesn't modify vsrc. With this
   change, the result of recursive folding is held in vtmp1. To be able to
   pass this intermediate result to reduce_mul_integral_le128b(), we would
   have to use another temporary FloatRegister, as vtmp1 would essentially
   act as vsrc. It's possible to get around this however:
   reduce_mul_integral_le128b() is modified so it's possible to pass
   matching vsrc and vtmp2 arguments. By doing this, we save ourselves a
   temporary register in rules that match to reduce_mul_integral_gt128b().
 - cleanup: revert an unnecessary change to reduce_mul_fp_le128b() formating
 - Use EXT instead of COMPACT to split a vector into two halves
   
   Benchmarks results:
   
   Neoverse-V1 (SVE 256-bit)
   
     Benchmark                 (size)   Mode   master         PR  Units
     ByteMaxVector.MULLanes      1024  thrpt 5447.643  11455.535 ops/ms
     ShortMaxVector.MULLanes     1024  thrpt 3388.183   7144.301 ops/ms
     IntMaxVector.MULLanes       1024  thrpt 3010.974   4911.485 ops/ms
     LongMaxVector.MULLanes      1024  thrpt 1539.137   2562.835 ops/ms
     FloatMaxVector.MULLanes     1024  thrpt 1355.551   4158.128 ops/ms
     DoubleMaxVector.MULLanes    1024  thrpt 1715.854   3284.189 ops/ms
   
   Fujitsu A64FX (SVE 512-bit)
   
     Benchmark                 (size)   Mode   master         PR  Units
     ByteMaxVector.MULLanes      1024  thrpt 1091.692   2887.798 ops/ms
     ShortMaxVector.MULLanes     1024  thrpt  597.008   1863.338 ops/ms
     IntMaxVector.MULLanes       1024  thrpt  510.642   1348.651 ops/ms
     LongMaxVector.MULLanes      1024  thrpt  468.878    878.620 ops/ms
     FloatMaxVector.MULLanes     1024  thrpt  376.284   2237.564 ops/ms
     DoubleMaxVector.MULLanes    1024  thrpt  431.343   1646.792 ops/ms
 - 8343689: AArch64: Optimize MulReduction implementation
   
   Add a reduce_mul intrinsic SVE specialization for >= 256-bit long
   vectors. It multiplies halves of the source vector using SVE
   instructions to get to a 128-bit long vector that fits into a SIMD&FP
   register. After that point, existing ASIMD implementation is used.
   
   Benchmarks results for an AArch64 CPU with support for SVE with 256-bit
   vector length:
   
     Benchmark                 (size)   Mode      Old        New  Units
     Byte256Vector.MULLanes      1024  thrpt  502.498  10222.717 ops/ms
     Double256Vector.MULLanes    1024  thrpt  172.116   3130.997 ops/ms
     Float256Vector.MULLanes     1024  thrpt  291.612   4164.138 ops/ms
     Int256Vector.MULLanes       1024  thrpt  362.276   3717.213 ops/ms
     Long256Vector.MULLanes      1024  thrpt  184.826   2054.345 ops/ms
     Short256Vector.MULLanes     1024  thrpt  379.231   5716.223 ops/ms
   
   Benchmarks results for an AArch64 CPU with support for SVE with 512-bit
   vector length:
   
     Benchmark                 (size)   Mode      Old       New   Units
     Byte512Vector.MULLanes      1024  thrpt  160.129  2630.600  ops/ms
     Double512Vector.MULLanes    1024  thrpt   51.229  1033.284  ops/ms
     Float512Vector.MULLanes     1024  thrpt   84.617  1658.400  ops/ms
     Int512Vector.MULLanes       1024  thrpt  109.419  1180.310  ops/ms
     Long512Vector.MULLanes      1024  thrpt   69.036   704.144  ops/ms
     Short512Vector.MULLanes     1024  thrpt  131.029  1629.632  ops/ms

-------------

Changes: https://git.openjdk.org/jdk/pull/23181/files
  Webrev: https://webrevs.openjdk.org/?repo=jdk&pr=23181&range=03
  Stats: 499 lines in 9 files changed: 346 ins; 2 del; 151 mod
  Patch: https://git.openjdk.org/jdk/pull/23181.diff
  Fetch: git fetch https://git.openjdk.org/jdk.git pull/23181/head:pull/23181

PR: https://git.openjdk.org/jdk/pull/23181


More information about the hotspot-compiler-dev mailing list