RFR: 8346236: Auto vectorization support for various Float16 operations [v8]
Emanuel Peter
epeter at openjdk.org
Fri Mar 28 11:31:40 UTC 2025
On Wed, 26 Mar 2025 21:18:32 GMT, Jatin Bhateja <jbhateja at openjdk.org> wrote:
>> This is a follow-up PR for https://github.com/openjdk/jdk/pull/22754
>>
>> The patch adds support to vectorize various float16 scalar operations (add/subtract/divide/multiply/sqrt/fma).
>>
>> Summary of changes included with the patch:
>> 1. C2 compiler New Vector IR creation.
>> 2. Auto-vectorization support.
>> 3. x86 backend implementation.
>> 4. New IR verification test for each newly supported vector operation.
>>
>> Following are the performance numbers of Float16OperationsBenchmark
>>
>> System : Intel(R) Xeon(R) Processor code-named Granite rapids
>> Frequency fixed at 2.5 GHz
>>
>>
>> Baseline
>> Benchmark (vectorDim) Mode Cnt Score Error Units
>> Float16OperationsBenchmark.absBenchmark 1024 thrpt 2 4191.787 ops/ms
>> Float16OperationsBenchmark.addBenchmark 1024 thrpt 2 1211.978 ops/ms
>> Float16OperationsBenchmark.cosineSimilarityDequantizedFP16 1024 thrpt 2 493.026 ops/ms
>> Float16OperationsBenchmark.cosineSimilarityDoubleRoundingFP16 1024 thrpt 2 612.430 ops/ms
>> Float16OperationsBenchmark.cosineSimilaritySingleRoundingFP16 1024 thrpt 2 616.012 ops/ms
>> Float16OperationsBenchmark.divBenchmark 1024 thrpt 2 604.882 ops/ms
>> Float16OperationsBenchmark.dotProductFP16 1024 thrpt 2 410.798 ops/ms
>> Float16OperationsBenchmark.euclideanDistanceDequantizedFP16 1024 thrpt 2 602.863 ops/ms
>> Float16OperationsBenchmark.euclideanDistanceFP16 1024 thrpt 2 640.348 ops/ms
>> Float16OperationsBenchmark.fmaBenchmark 1024 thrpt 2 809.175 ops/ms
>> Float16OperationsBenchmark.getExponentBenchmark 1024 thrpt 2 2682.764 ops/ms
>> Float16OperationsBenchmark.isFiniteBenchmark 1024 thrpt 2 3373.901 ops/ms
>> Float16OperationsBenchmark.isFiniteCMovBenchmark 1024 thrpt 2 1881.652 ops/ms
>> Float16OperationsBenchmark.isFiniteStoreBenchmark 1024 thrpt 2 2273.745 ops/ms
>> Float16OperationsBenchmark.isInfiniteBenchmark 1024 thrpt 2 2147.913 ops/ms
>> Float16OperationsBenchmark.isInfiniteCMovBen...
>
> Jatin Bhateja has updated the pull request incrementally with one additional commit since the last revision:
>
> Some re-factoring
Changes requested by epeter (Reviewer).
test/hotspot/jtreg/compiler/vectorization/TestFloat16VectorOperations.java line 29:
> 27: * @bug 8346236
> 28: * @summary Auto-vectorization support for various Float16 operations
> 29: * @requires vm.compiler2.enabled
Suggestion:
I don't think C2 is a requirement, the IR framework can still run otherwise, and just disables the IR rules.
test/hotspot/jtreg/compiler/vectorization/TestFloat16VectorOperations.java line 54:
> 52:
> 53: public static void main(String args[]) {
> 54: TestFramework.runWithFlags("-XX:-TieredCompilation", "-Xbatch","--add-modules=jdk.incubator.vector");
Suggestion:
TestFramework.runWithFlags("--add-modules=jdk.incubator.vector");
Were the other flags really required?
-------------
PR Review: https://git.openjdk.org/jdk/pull/22755#pullrequestreview-2725227397
PR Review Comment: https://git.openjdk.org/jdk/pull/22755#discussion_r2018495495
PR Review Comment: https://git.openjdk.org/jdk/pull/22755#discussion_r2018496386
More information about the hotspot-compiler-dev
mailing list