RFR: 8343689: AArch64: Optimize MulReduction implementation [v11]
Xiaohong Gong
xgong at openjdk.org
Wed Sep 10 08:57:40 UTC 2025
On Thu, 14 Aug 2025 14:01:13 GMT, Mikhail Ablakatov <mablakatov at openjdk.org> wrote:
>> Add a reduce_mul intrinsic SVE specialization for >= 256-bit long vectors. It multiplies halves of the source vector using SVE instructions to get to a 128-bit long vector that fits into a SIMD&FP register. After that point, existing ASIMD implementation is used.
>>
>> Nothing changes for <= 128-bit long vectors as for those the existing ASIMD implementation is used directly still.
>>
>> The benchmarks below are from [panama-vector/vectorIntrinsics:test/micro/org/openjdk/bench/jdk/incubator/vector/operation](https://github.com/openjdk/panama-vector/tree/vectorIntrinsics/test/micro/org/openjdk/bench/jdk/incubator/vector/operation). To the best of my knowledge, openjdk/jdk is missing VectorAPI reducion micro-benchmarks.
>>
>> Benchmarks results:
>>
>> Neoverse-V1 (SVE 256-bit)
>>
>> Benchmark (size) Mode master PR Units
>> ByteMaxVector.MULLanes 1024 thrpt 5447.643 11455.535 ops/ms
>> ShortMaxVector.MULLanes 1024 thrpt 3388.183 7144.301 ops/ms
>> IntMaxVector.MULLanes 1024 thrpt 3010.974 4911.485 ops/ms
>> LongMaxVector.MULLanes 1024 thrpt 1539.137 2562.835 ops/ms
>> FloatMaxVector.MULLanes 1024 thrpt 1355.551 4158.128 ops/ms
>> DoubleMaxVector.MULLanes 1024 thrpt 1715.854 3284.189 ops/ms
>>
>>
>> Fujitsu A64FX (SVE 512-bit):
>>
>> Benchmark (size) Mode master PR Units
>> ByteMaxVector.MULLanes 1024 thrpt 1091.692 2887.798 ops/ms
>> ShortMaxVector.MULLanes 1024 thrpt 597.008 1863.338 ops/ms
>> IntMaxVector.MULLanes 1024 thrpt 510.642 1348.651 ops/ms
>> LongMaxVector.MULLanes 1024 thrpt 468.878 878.620 ops/ms
>> FloatMaxVector.MULLanes 1024 thrpt 376.284 2237.564 ops/ms
>> DoubleMaxVector.MULLanes 1024 thrpt 431.343 1646.792 ops/ms
>
> Mikhail Ablakatov has updated the pull request incrementally with one additional commit since the last revision:
>
> cleanup: start the SVE Integer Misc - Unpredicated section
Following issues are reported when I run this test on a SVE 512-bit vector length simulator.
test Byte256VectorTests.MULByte256VectorTestsMasked(byte[-i * 5], byte[cornerCaseValue(i)], mask[false]): success [15ms]
#
# A fatal error has been detected by the Java Runtime Environment:
#
# Internal Error (/tmp/ci-scripts/jdk-src/src/hotspot/cpu/aarch64/aarch64_vector.ad:3522), pid=299515, tid=299551
# assert(length_in_bytes == MaxVectorSize) failed: invalid vector length
#
Same failures happens on following tests:
jdk/incubator/vector/Byte256VectorTests.java
jdk/incubator/vector/Int256VectorTests.java
jdk/incubator/vector/Long256VectorTests.java
jdk/incubator/vector/Short256VectorTests.java
-------------
PR Comment: https://git.openjdk.org/jdk/pull/23181#issuecomment-3273984366
More information about the hotspot-compiler-dev
mailing list