Regression (b86): OOM on parallel stream
Brian Goetz
brian.goetz at oracle.com
Fri Apr 19 05:44:04 PDT 2013
Yes, in parallel, a limit operation (currently) needs to buffer its
entire results. There are optimizations we can apply (not yet done) on
SIZED streams and UNORDERED streams that remove this restriction, but in
the general case, there's going to be a lot of buffering when run in
parallel. This is because limit() is constrained to delivering the
elements in encounter order.
Though in this case, buffering 200000 longs should not run out of
memory; your heap size is probably tiny -- and the 10m wait was GC
thrashing.
On 4/19/2013 8:08 AM, Mallwitz, Christian wrote:
> Hi,
>
> The following throws (after a 10+ minute wait) an OOM - removing the parallel() bit produces the expected result of 200000.
>
> Thanks
> Christian
>
> public class OOM {
> public static void main(String[] args) {
> System.out.println(
> java.util.stream.Streams.iterate(1L, n -> n + 1L)
> .parallel()
> .filter(l -> l % 100 == 0).limit(200_000).count());
> }
> }
>
> Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
> at java.util.stream.SpinedBuffer.ensureCapacity(SpinedBuffer.java:129)
> at java.util.stream.Nodes$SpinedNodeBuilder.begin(Nodes.java:1278)
> at java.util.stream.Sink$ChainedReference.begin(Sink.java:252)
> at java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:452)
> at java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:443)
> at java.util.stream.SliceOps$SliceTask.doLeaf(SliceOps.java:328)
> at java.util.stream.SliceOps$SliceTask.doLeaf(SliceOps.java:273)
> at java.util.stream.AbstractTask.compute(AbstractTask.java:284)
> at java.util.concurrent.CountedCompleter.exec(CountedCompleter.java:710)
> at java.util.concurrent.ForkJoinTask.doExec(ForkJoinTask.java:260)
> at java.util.concurrent.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1012)
> at java.util.concurrent.ForkJoinPool.runWorker(ForkJoinPool.java:1631)
> at java.util.concurrent.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>
>
More information about the lambda-dev
mailing list