Vector API performance variation with arrays, byte arrays or byte buffers

Vladimir Ivanov vladimir.x.ivanov at oracle.com
Wed Mar 11 18:39:53 UTC 2020


Nice micros indeed, Antoine!

> In principle we should be able to achieve the same for byte[] and byte buffer access. Alas not right now though :-(
> 
> For vectorBufferBuffer I think there are a number of issues that in aggregate make things worse:
> 
> 1) when bounds checks are switched off it can be observed that vector movs are not using the most efficient addressing modes as is the case for the primitive array, thus each vector instruction is prefixed with the address and offset calculation rather than embedded into the instruction itself.
> 
>   0.07%  ↗   0x000000010eef7370:   mov    0x30(%r12,%r10,8),%r8d
> 18.23%  │   0x000000010eef7375:   movslq %esi,%rax
>   0.39%  │   0x000000010eef7378:   mov    %rax,%rdx
>          │   0x000000010eef737b:   add    0x10(%r12,%r10,8),%rdx
>   0.10%  │   0x000000010eef7380:   shl    $0x3,%r8
> 18.58%  │   0x000000010eef7384:   vmovdqu (%r8,%rdx,1),%ymm0

Another issue is how ByteBuffers are accesses:

     DoubleVector fromByteBuffer0Template(ByteBuffer bb, int offset) {
         DoubleSpecies vsp = vspecies();
         return VectorIntrinsics.load(
             vsp.vectorType(), vsp.elementType(), vsp.laneCount(),
             bufferBase(bb), bufferAddress(bb, offset),
             bb, offset, vsp,
             (buf, off, s) -> {
                 DoubleBuffer tb = wrapper(buf, off, NATIVE_ENDIAN);
                 return s.ldOp(tb, 0, (tb_, __, i) -> tb_.get(i));
            });
     }

JIT-compiler (C2) needs more information about ByteBuffer instance 
("bb") to disambiguate access location (on-heap vs off-heap vs mixed).

VectorIntrinsics.bufferBase(bb) and VectorIntrinsics.bufferAddress(bb, 
offset) are opaque in that respect, so C2 has to put membars 
(CPUOrderMemBar) around the accesses (since they are classified as 
mixed) and it effectively limits amount of optimizations.

> 2) when bounds are are enabled this just compounds the issue.
> 
> 3) in either case loop unrolling does not occur.

Membars are the culprit, but once they are gone, C2 unrolling heuristics 
need some tweaking as well: it doesn't unroll loops with large strides 
(8*8 = 32).

Once membars are gone and unrolling is fixed, the scores become in favor 
of direct buffers (my guess is due to alignment):

Before:

   -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=2:
     vectorArrayArray      5738494.127 ± 52704.256  ops/s
     vectorBufferBuffer    1584747.638 ± 35644.433  ops/s

   -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=0:
     vectorArrayArray      5705607.529 ±  118589.894  ops/s
     vectorBufferBuffer    2573858.340 ±   3322.248  ops/s

vs

After (no membars + unrolling):

   -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=[0,2]:
     vectorArrayArray      7961232.893 ± 59427.218  ops/s
     vectorBufferBuffer    8600848.228 ± 84322.430  ops/s

Best regards,
Vladimir Ivanov

>> On Mar 10, 2020, at 7:51 AM, Antoine Chambille <ach at activeviam.com> wrote:
>>
>> Hi folks,
>>
>> First, the new Vector API is -awesome- and it makes Java the best language
>> for writing data parallel algorithms, a remarkable turnaround. It reminds
>> me of when Java 5 became the best language for concurrent programming.
>>
>> I'm benchmarking a use case where you aggregate element wise an array of
>> doubles into another array of doubles ( ai += bi for each coordinate ).
>> There are large performance variations depending on whether the data is
>> held in arrays, byte arrays or byte buffers. Disabling bounds checking
>> removes some of the overhead but not all. I'm sharing the JMH
>> microbenchmark below if that can help.
>>
>>
>>
>> Here are the results of running the benchmark on my laptop with Windows 10
>> and an Intel core i9-8950HK @2.90GHz
>>
>>
>> -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=2
>>
>> Benchmark                  Mode  Cnt        Score        Error  Units
>> standardArrayArray        thrpt    5  4657680.731 ±  22775.673  ops/s
>> standardArrayBuffer       thrpt    5  1074170.758 ±  28116.666  ops/s
>> standardBufferArray       thrpt    5  1066531.757 ±  39990.913  ops/s
>> standardBufferBuffer      thrpt    5   801500.523 ±  19984.247  ops/s
>> vectorArrayArray          thrpt    5  7107822.743 ± 454478.273  ops/s
>> vectorArrayBuffer         thrpt    5  1922263.407 ±  29921.036  ops/s
>> vectorBufferArray         thrpt    5  2732335.558 ±  81958.886  ops/s
>> vectorBufferBuffer        thrpt    5  1833276.409 ±  59682.441  ops/s
>> vectorByteArrayByteArray  thrpt    5  4618267.357 ± 127141.691  ops/s
>>
>>
>>
>> -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=0
>>
>> Benchmark                  Mode  Cnt        Score        Error  Units
>> standardArrayArray        thrpt    5  4692286.894 ±  67785.058  ops/s
>> standardArrayBuffer       thrpt    5  1073420.025 ±  28216.922  ops/s
>> standardBufferArray       thrpt    5  1066385.323 ±  15700.653  ops/s
>> standardBufferBuffer      thrpt    5   797741.269 ±  15881.590  ops/s
>> vectorArrayArray          thrpt    5  8351594.873 ± 153608.251  ops/s
>> vectorArrayBuffer         thrpt    5  3107638.739 ± 223093.281  ops/s
>> vectorBufferArray         thrpt    5  3653867.093 ±  75307.265  ops/s
>> vectorBufferBuffer        thrpt    5  2224031.876 ±  49263.778  ops/s
>> vectorByteArrayByteArray  thrpt    5  4761018.920 ± 264243.227  ops/s
>>
>>
>>
>> cheers,
>> -Antoine
>>
>>
>>
>>
>>
>>
>>
>>
>> package com.activeviam;
>>
>> import jdk.incubator.vector.DoubleVector;
>> import jdk.incubator.vector.VectorSpecies;
>> import org.openjdk.jmh.annotations.*;
>> import org.openjdk.jmh.runner.Runner;
>> import org.openjdk.jmh.runner.options.Options;
>> import org.openjdk.jmh.runner.options.OptionsBuilder;
>>
>> import java.nio.ByteBuffer;
>> import java.nio.ByteOrder;
>>
>> /**
>> * Benchmark the element wise aggregation of an array
>> * of doubles into another array of doubles, using
>> * combinations of  java arrays, byte buffers, standard java code
>> * and the new Vector API.
>> */
>> public class AggregationBenchmark {
>>
>>     /** Manually launch JMH */
>>     public static void main(String[] params) throws Exception {
>>         Options opt = new OptionsBuilder()
>>             .include(AggregationBenchmark.class.getSimpleName())
>>             .forks(1)
>>             .build();
>>
>>         new Runner(opt).run();
>>     }
>>
>>
>>     @State(Scope.Benchmark)
>>     public static class Data {
>>         final static int SIZE = 1024;
>>         final double[] inputArray;
>>         final double[] outputArray;
>>         final byte[] inputByteArray;
>>         final byte[] outputByteArray;
>>         final ByteBuffer inputBuffer;
>>         final ByteBuffer outputBuffer;
>>
>>         public Data() {
>>             this.inputArray = new double[SIZE];
>>             this.outputArray = new double[SIZE];
>>             this.inputByteArray = new byte[8 * SIZE];
>>             this.outputByteArray = new byte[8 * SIZE];
>>             this.inputBuffer = ByteBuffer.allocateDirect(8 * SIZE);
>>             this.outputBuffer = ByteBuffer.allocateDirect(8 * SIZE);
>>         }
>>     }
>>
>>     @Benchmark
>>     public void standardArrayArray(Data state) {
>>         final double[] input = state.inputArray;
>>         final double[] output = state.outputArray;
>>         for(int i = 0; i < input.length; i++) {
>>             output[i] += input[i];
>>         }
>>     }
>>
>>     @Benchmark
>>     public void standardArrayBuffer(Data state) {
>>         final double[] input = state.inputArray;
>>         final ByteBuffer output = state.outputBuffer;
>>         for(int i = 0; i < input.length; i++) {
>>             output.putDouble(i << 3, output.getDouble(i << 3) + input[i]);
>>         }
>>     }
>>
>>     @Benchmark
>>     public void standardBufferArray(Data state) {
>>         final ByteBuffer input = state.inputBuffer;
>>         final double[] output = state.outputArray;
>>         for(int i = 0; i < input.capacity(); i+=8) {
>>             output[i >>> 3] += input.getDouble(i);
>>         }
>>     }
>>
>>     @Benchmark
>>     public void standardBufferBuffer(Data state) {
>>         final ByteBuffer input = state.inputBuffer;
>>         final ByteBuffer output = state.outputBuffer;
>>         for(int i = 0; i < input.capacity(); i+=8) {
>>             output.putDouble(i, output.getDouble(i) + input.getDouble(i));
>>         }
>>     }
>>
>>
>>     final static VectorSpecies<Double> SPECIES = DoubleVector.SPECIES_MAX;
>>
>>     @Benchmark
>>     public void vectorArrayArray(Data state) {
>>         final double[] input = state.inputArray;
>>         final double[] output = state.outputArray;
>>
>>         for (int i = 0; i < input.length; i+=SPECIES.length()) {
>>             DoubleVector a = DoubleVector.fromArray(SPECIES, input, i);
>>             DoubleVector b = DoubleVector.fromArray(SPECIES, output, i);
>>             a = a.add(b);
>>             a.intoArray(output, i);
>>         }
>>     }
>>
>>     @Benchmark
>>     public void vectorByteArrayByteArray(Data state) {
>>         final byte[] input = state.inputByteArray;
>>         final byte[] output = state.outputByteArray;
>>
>>         for (int i = 0; i < input.length; i += 8 * SPECIES.length()) {
>>             DoubleVector a = DoubleVector.fromByteArray(SPECIES, input, i);
>>             DoubleVector b = DoubleVector.fromByteArray(SPECIES, output, i);
>>             a = a.add(b);
>>             a.intoByteArray(output, i);
>>         }
>>     }
>>
>>     @Benchmark
>>     public void vectorBufferBuffer(Data state) {
>>         final ByteBuffer input = state.inputBuffer;
>>         final ByteBuffer output = state.outputBuffer;
>>         for (int i = 0; i < input.capacity(); i += 8 * SPECIES.length()) {
>>             DoubleVector a = DoubleVector.fromByteBuffer(SPECIES, input, i,
>> ByteOrder.nativeOrder());
>>             DoubleVector b = DoubleVector.fromByteBuffer(SPECIES, output,
>> i, ByteOrder.nativeOrder());
>>             a = a.add(b);
>>             a.intoByteBuffer(output, i, ByteOrder.nativeOrder());
>>         }
>>     }
>>
>>     @Benchmark
>>     public void vectorArrayBuffer(Data state) {
>>         final double[] input = state.inputArray;
>>         final ByteBuffer output = state.outputBuffer;
>>
>>         for (int i = 0; i < input.length; i+=SPECIES.length()) {
>>             DoubleVector a = DoubleVector.fromArray(SPECIES, input, i);
>>             DoubleVector b = DoubleVector.fromByteBuffer(SPECIES, output, i
>> << 3, ByteOrder.nativeOrder());
>>             a = a.add(b);
>>             a.intoByteBuffer(output, i << 3, ByteOrder.nativeOrder());
>>         }
>>     }
>>
>>     @Benchmark
>>     public void vectorBufferArray(Data state) {
>>         final ByteBuffer input = state.inputBuffer;
>>         final double[] output = state.outputArray;
>>         for (int i = 0; i < input.capacity(); i += 8 * SPECIES.length()) {
>>             DoubleVector a = DoubleVector.fromByteBuffer(SPECIES, input, i,
>> ByteOrder.nativeOrder());
>>             DoubleVector b = DoubleVector.fromArray(SPECIES, output, i >>>
>> 3);
>>             a = a.add(b);
>>             a.intoArray(output, i >>> 3);
>>         }
>>     }
>>
>> }
> 


More information about the panama-dev mailing list