Vector performance issue.
Jake Luciani
jake at apache.org
Mon Sep 18 15:45:28 UTC 2023
Looking at the code I wonder if it's this extra branch?
@ForceInline
final
float reduceLanesTemplate(VectorOperators.Associative op,
Class<? extends VectorMask<Float>> maskClass,
VectorMask<Float> m) {
m.check(maskClass, this);
if (op == FIRST_NONZERO) {
// FIXME: The JIT should handle this.
FloatVector v = broadcast((float) 0).blend(this, m);
return v.reduceLanesTemplate(op);
}
int opc = opCode(op);
return fromBits(VectorSupport.reductionCoerced(
opc, getClass(), maskClass, float.class, length(),
this, m,
REDUCE_IMPL.find(op, opc, FloatVector::reductionOperations)));
}
On Mon, Sep 18, 2023 at 11:11 AM Andrii Lomakin
<lomakin.andrey at gmail.com> wrote:
>
> Hi,
> I have the same problem during calculation of Eucledian distance in my project too.
> Writing just to confirm that it is not a single case and I have got the same result during profiling.
>
> On Sat, Sep 16, 2023 at 9:50 PM Jake Luciani <jake at apache.org> wrote:
>>
>> Hi,
>>
>> I've been struggling with a problem recently using the vector api.
>> It appears as reduceLanes is not using the intrinsic.
>>
>> ns percent samples top
>> ---------- ------- ------- ---
>> 13240151836 88.21% 1324
>> jdk.incubator.vector.FloatVector.reduceLanesTemplate
>> 1349991099 8.99% 135
>> jdk.incubator.vector.FloatVector.lanewiseTemplate
>>
>> I've tested openjdk 20 and 21 and my machine has AVX512.
>>
>> When I PrintIntrinsics I see the following (among others):
>>
>> ** missing constant: opr=RShiftI vclass=ConP etype=ConP vlen=ConI
>>
>> I've included a JMH benchmark that reproduces the issue.
>>
>> -Jake
>>
>> import jdk.incubator.vector.FloatVector;
>> import jdk.incubator.vector.IntVector;
>> import jdk.incubator.vector.ShortVector;
>> import jdk.incubator.vector.VectorOperators;
>> import org.openjdk.jmh.annotations.*;
>> import org.openjdk.jmh.infra.Blackhole;
>>
>> import java.util.concurrent.ThreadLocalRandom;
>> import java.util.concurrent.TimeUnit;
>>
>>
>> @Warmup(iterations = 1, time = 5)
>> @Measurement(iterations = 3, time = 5)
>> @Fork(warmups = 1, value = 1, jvmArgsPrepend = {
>> "--add-modules=jdk.incubator.vector",
>> "--enable-preview"})
>> public class VectorPerfBench
>> {
>> private static final int SIZE = 8192;
>> private static final IntVector BF16_BYTE_SHIFT =
>> IntVector.broadcast(IntVector.SPECIES_512, 16);
>>
>> public static short float32ToBFloat16(float f) {
>> return (short) (Float.floatToIntBits(f) >> 16);
>> }
>> @State(Scope.Benchmark)
>> public static class Parameters {
>> final short[] s1 = new short[SIZE];
>> final short[] s2 = new short[SIZE];
>>
>> public Parameters() {
>> for (int i = 0; i < SIZE; i++) {
>> s1[i] =
>> float32ToBFloat16(ThreadLocalRandom.current().nextFloat());
>> s2[i] =
>> float32ToBFloat16(ThreadLocalRandom.current().nextFloat());
>> }
>> }
>> }
>>
>> @Benchmark
>> @OutputTimeUnit(TimeUnit.MILLISECONDS)
>> @BenchmarkMode(Mode.Throughput)
>> public void bfloatDot(Parameters p, Blackhole bh) {
>> FloatVector acc = FloatVector.zero(FloatVector.SPECIES_512);
>> for (int i = 0; i < SIZE; i += FloatVector.SPECIES_512.length()) {
>>
>> var f1 = ShortVector.fromArray(ShortVector.SPECIES_256, p.s1, i)
>> .convertShape(VectorOperators.ZERO_EXTEND_S2I,
>> IntVector.SPECIES_512, 0)
>> .lanewise(VectorOperators.LSHL, BF16_BYTE_SHIFT)
>> .reinterpretAsFloats();
>>
>> var f2 = ShortVector.fromArray(ShortVector.SPECIES_256, p.s2, i)
>> .convertShape(VectorOperators.ZERO_EXTEND_S2I,
>> IntVector.SPECIES_512, 0)
>> .lanewise(VectorOperators.LSHL, BF16_BYTE_SHIFT)
>> .reinterpretAsFloats();
>>
>> acc = acc.add(f1.mul(f2));
>> }
>>
>> bh.consume(acc.reduceLanes(VectorOperators.ADD));
>> }
>>
>> public static void main(String[] args) throws Exception {
>> org.openjdk.jmh.Main.main(args);
>> }
>> }
>
>
>
> --
> Best regards,
> Andrii Lomakin.
>
More information about the panama-dev
mailing list