RFR: 8338383: Implement JEP 491: Synchronize Virtual Threads without Pinning [v12]

Dean Long dlong at openjdk.org
Sat Oct 26 02:18:21 UTC 2024


On Fri, 25 Oct 2024 21:33:24 GMT, Patricio Chilano Mateo <pchilanomate at openjdk.org> wrote:

>> This is the implementation of JEP 491: Synchronize Virtual Threads without Pinning. See [JEP 491](https://bugs.openjdk.org/browse/JDK-8337395) for further details.
>> 
>> In order to make the code review easier the changes have been split into the following initial 4 commits:
>> 
>> - Changes to allow unmounting a virtual thread that is currently holding monitors.
>> - Changes to allow unmounting a virtual thread blocked on synchronized trying to acquire the monitor.
>> - Changes to allow unmounting a virtual thread blocked in `Object.wait()` and its timed-wait variants.
>> - Changes to tests, JFR pinned event, and other changes in the JDK libraries.
>> 
>> The changes fix pinning issues for all 4 ports that currently implement continuations: x64, aarch64, riscv and ppc. Note: ppc changes were added recently and stand in its own commit after the initial ones.
>> 
>> The changes fix pinning issues when using `LM_LIGHTWEIGHT`, i.e. the default locking mode, (and `LM_MONITOR` which comes for free), but not when using `LM_LEGACY` mode. Note that the `LockingMode` flag has already been deprecated ([JDK-8334299](https://bugs.openjdk.org/browse/JDK-8334299)), with the intention to remove `LM_LEGACY` code in future releases.
>> 
>> 
>> ## Summary of changes
>> 
>> ### Unmount virtual thread while holding monitors
>> 
>> As stated in the JEP, currently when a virtual thread enters a synchronized method or block, the JVM records the virtual thread's carrier platform thread as holding the monitor, not the virtual thread itself. This prevents the virtual thread from being unmounted from its carrier, as ownership information would otherwise go wrong. In order to fix this limitation we will do two things:
>> 
>> - We copy the oops stored in the LockStack of the carrier to the stackChunk when freezing (and clear the LockStack). We copy the oops back to the LockStack of the next carrier when thawing for the first time (and clear them from the stackChunk). Note that we currently assume carriers don't hold monitors while mounting virtual threads.
>> 
>> - For inflated monitors we now record the `java.lang.Thread.tid` of the owner in the ObjectMonitor's `_owner` field instead of a JavaThread*. This allows us to tie the owner of the monitor to a `java.lang.Thread` instance, rather than to a JavaThread which is only created per platform thread. The tid is already a 64 bit field so we can ignore issues of the counter wrapping around.
>> 
>> #### General notes about this part:
>> 
>> - Since virtual th...
>
> Patricio Chilano Mateo has updated the pull request incrementally with two additional commits since the last revision:
> 
>  - Restore use of atPointA in test StopThreadTest.java
>  - remove interruptible check from conditional in Object::wait

> On failure to acquire a monitor inside `ObjectMonitor::enter` a virtual thread will call freeze to copy all Java frames to the heap. We will add the virtual thread to the ObjectMonitor's queue and return back to Java. Instead of continue execution in Java though, the virtual thread will jump to a preempt stub which will clear the frames copied from the physical stack, and will return to `Continuation.run()` to proceed with the unmount logic.

During this time, the Java frames are not changing, so it seems like it doesn't matter if the freeze/copy happens immediately or after we unwind the native frames and enter the preempt stub.  In fact, it seems like it could be more efficient to delay the freeze/copy, given the fact that the preemption can be canceled.

-------------

PR Comment: https://git.openjdk.org/jdk/pull/21565#issuecomment-2439180320


More information about the serviceability-dev mailing list