RFR: 8282664: Unroll by hand StringUTF16 and StringLatin1 polynomial hash loops

Claes Redestad redestad at openjdk.org
Sat Oct 29 10:38:08 UTC 2022


On Tue, 25 Oct 2022 10:37:40 GMT, Claes Redestad <redestad at openjdk.org> wrote:

> Continuing the work initiated by @luhenry to unroll and then intrinsify polynomial hash loops.
> 
> I've rewired the library changes to route via a single `@IntrinsicCandidate` method. To make this work I've harmonized how they are invoked so that there's less special handling and checks in the intrinsic. Mainly do the null-check outside of the intrinsic for `Arrays.hashCode` cases.
> 
> Having a centralized entry point means it'll be easier to parameterize the factor and start values which are now hard-coded (always 31, and a start value of either one for `Arrays` or zero for `String`). It seems somewhat premature to parameterize this up front.
> 
> The current implementation is performance neutral on microbenchmarks on all tested platforms (x64, aarch64) when not enabling the intrinsic. We do add a few trivial method calls which increase the call stack depth, so surprises cannot be ruled out on complex workloads.
> 
> With the most recent fixes the x64 intrinsic results on my workstation look like this:
> 
> Benchmark                               (size)  Mode  Cnt     Score    Error  Units
> StringHashCode.Algorithm.defaultLatin1       1  avgt    5     2.199 ±  0.017  ns/op
> StringHashCode.Algorithm.defaultLatin1      10  avgt    5     6.933 ±  0.049  ns/op
> StringHashCode.Algorithm.defaultLatin1     100  avgt    5    29.935 ±  0.221  ns/op
> StringHashCode.Algorithm.defaultLatin1   10000  avgt    5  1596.982 ±  7.020  ns/op
> 
> Baseline:
> 
> Benchmark                               (size)  Mode  Cnt     Score    Error  Units
> StringHashCode.Algorithm.defaultLatin1       1  avgt    5     2.200 ±  0.013  ns/op
> StringHashCode.Algorithm.defaultLatin1      10  avgt    5     9.424 ±  0.122  ns/op
> StringHashCode.Algorithm.defaultLatin1     100  avgt    5    90.541 ±  0.512  ns/op
> StringHashCode.Algorithm.defaultLatin1   10000  avgt    5  9425.321 ± 67.630  ns/op
> 
> I.e. no measurable overhead compared to baseline even for `size == 1`.
> 
> The vectorized code now nominally works for all unsigned cases as well as ints, though more testing would be good.
> 
> Benchmark for `Arrays.hashCode`:
> 
> Benchmark              (size)  Mode  Cnt     Score    Error  Units
> ArraysHashCode.bytes        1  avgt    5     1.884 ±  0.013  ns/op
> ArraysHashCode.bytes       10  avgt    5     6.955 ±  0.040  ns/op
> ArraysHashCode.bytes      100  avgt    5    87.218 ±  0.595  ns/op
> ArraysHashCode.bytes    10000  avgt    5  9419.591 ± 38.308  ns/op
> ArraysHashCode.chars        1  avgt    5     2.200 ±  0.010  ns/op
> ArraysHashCode.chars       10  avgt    5     6.935 ±  0.034  ns/op
> ArraysHashCode.chars      100  avgt    5    30.216 ±  0.134  ns/op
> ArraysHashCode.chars    10000  avgt    5  1601.629 ±  6.418  ns/op
> ArraysHashCode.ints         1  avgt    5     2.200 ±  0.007  ns/op
> ArraysHashCode.ints        10  avgt    5     6.936 ±  0.034  ns/op
> ArraysHashCode.ints       100  avgt    5    29.412 ±  0.268  ns/op
> ArraysHashCode.ints     10000  avgt    5  1610.578 ±  7.785  ns/op
> ArraysHashCode.shorts       1  avgt    5     1.885 ±  0.012  ns/op
> ArraysHashCode.shorts      10  avgt    5     6.961 ±  0.034  ns/op
> ArraysHashCode.shorts     100  avgt    5    87.095 ±  0.417  ns/op
> ArraysHashCode.shorts   10000  avgt    5  9420.617 ± 50.089  ns/op
> 
> Baseline:
> 
> Benchmark              (size)  Mode  Cnt     Score    Error  Units
> ArraysHashCode.bytes        1  avgt    5     3.213 ±  0.207  ns/op
> ArraysHashCode.bytes       10  avgt    5     8.483 ±  0.040  ns/op
> ArraysHashCode.bytes      100  avgt    5    90.315 ±  0.655  ns/op
> ArraysHashCode.bytes    10000  avgt    5  9422.094 ± 62.402  ns/op
> ArraysHashCode.chars        1  avgt    5     3.040 ±  0.066  ns/op
> ArraysHashCode.chars       10  avgt    5     8.497 ±  0.074  ns/op
> ArraysHashCode.chars      100  avgt    5    90.074 ±  0.387  ns/op
> ArraysHashCode.chars    10000  avgt    5  9420.474 ± 41.619  ns/op
> ArraysHashCode.ints         1  avgt    5     2.827 ±  0.019  ns/op
> ArraysHashCode.ints        10  avgt    5     7.727 ±  0.043  ns/op
> ArraysHashCode.ints       100  avgt    5    89.405 ±  0.593  ns/op
> ArraysHashCode.ints     10000  avgt    5  9426.539 ± 51.308  ns/op
> ArraysHashCode.shorts       1  avgt    5     3.071 ±  0.062  ns/op
> ArraysHashCode.shorts      10  avgt    5     8.168 ±  0.049  ns/op
> ArraysHashCode.shorts     100  avgt    5    90.399 ±  0.292  ns/op
> ArraysHashCode.shorts   10000  avgt    5  9420.171 ± 44.474  ns/op
> 
> 
> As we can see the `Arrays` intrinsics are faster for small inputs, and faster on large inputs for `char` and `int` (the ones currently vectorized). I aim to fix `byte` and `short` cases before integrating, though it might be acceptable to hand that off as follow-up enhancements to not further delay integration of this enhancement.

> > Porting to aarch64 and other platforms can be done as follow-ups and shouldn't block integration.
> 
> I'm not an expert in JVM internals, but there's an already seemingly working String.hashCode intrinsification that's ISA independent: #6658 It operates on higher level than direct assembly instructions, i.e. it operates on the ISA-independent vector nodes, so that all hardware platforms that support vectorization would get speedup (i.e. x86-64, x86-32, arm32, arm64, etc), therefore reducing manual work to get all of them working. I wonder why that pull request got no visible interest?
> 
> Forgive me if I got something wrong :)

I'll have to ask @merykitty why that patch was stalled. Never appeared on my radar until now -- thanks!

The approach to use the library call kit API is promising since it avoids the need to port.  And with similar results. I'll see if we can merge the approach here of having a shared intrinsic for `Arrays` and `String`, and bring in an ISA-independent backend implementation as in #6658

-------------

PR: https://git.openjdk.org/jdk/pull/10847


More information about the shenandoah-dev mailing list