[RFC][icedtea6]: Backport - NaN in stroked quadratic paths.
Dr Andrew John Hughes
ahughes at redhat.com
Wed May 4 06:58:46 PDT 2011
On 10:52 Thu 28 Apr , Denis Lila wrote:
> Hi.
>
> This is my latest bugfix for the openjdk7 2d forest.
> I would like to backport it into icedtea6.
>
> Good to go?
>
> ChangeLog:
> +2011-04-28 Denis Lila <dlila at redhat.com>
> +
> + * Makefile.am: Apply patch.
> + * NEWS: Update with backport.
> + * patches/openjdk/7036754-stroker-nan.patch: New patch. Fix NaN
> + quad stroking problem.
> +
>
> Thank you,
> Denis.
Looks fine, but please don't include the ChangeLog in the patch itself; just in the email body.
It makes the patch harder to apply.
> diff -r ad45dd8bcf45 ChangeLog
> --- a/ChangeLog Thu Apr 28 08:36:21 2011 -0400
> +++ b/ChangeLog Thu Apr 28 10:52:40 2011 -0400
> @@ -1,3 +1,10 @@
> +2011-04-28 Denis Lila <dlila at redhat.com>
> +
> + * Makefile.am: Apply patch.
> + * NEWS: Update with backport.
> + * patches/openjdk/7036754-stroker-nan.patch: New patch. Fix NaN
> + quad stroking problem.
> +
> 2011-04-28 Denis Lila <dlila at redhat.com>
>
> * Makefile.am: Apply patches.
> diff -r ad45dd8bcf45 Makefile.am
> --- a/Makefile.am Thu Apr 28 08:36:21 2011 -0400
> +++ b/Makefile.am Thu Apr 28 10:52:40 2011 -0400
> @@ -338,7 +338,8 @@
> patches/revert-6885123.patch \
> patches/hotspot/$(HSBUILD)/7032388-work_without_cmov_instruction.patch \
> patches/openjdk/7031385-gcc-register-allocation-fix.patch \
> - patches/shark-llvm-2.9.patch
> + patches/shark-llvm-2.9.patch \
> + patches/openjdk/7036754-stroker-nan.patch
>
> if WITH_ALT_HSBUILD
> ICEDTEA_PATCHES += \
> diff -r ad45dd8bcf45 NEWS
> --- a/NEWS Thu Apr 28 08:36:21 2011 -0400
> +++ b/NEWS Thu Apr 28 10:52:40 2011 -0400
> @@ -20,6 +20,7 @@
> - S7032388, PR682: Make HotSpot work on machines without cmov instruction again
> - S6748082: remove platform-specific code from SwingUtilities2.isDisplayLocal
> - S6708580: Java applications slow when EXA enabled
> + - S7036754: Stroked quads sometimes contain NaN
> * Bug fixes
> - PR637: make check should exit with an error code if any regression test failed.
> - G356743: Support libpng 1.5.
> diff -r ad45dd8bcf45 patches/openjdk/7036754-stroker-nan.patch
> --- /dev/null Thu Jan 01 00:00:00 1970 +0000
> +++ b/patches/openjdk/7036754-stroker-nan.patch Thu Apr 28 10:52:40 2011 -0400
> @@ -0,0 +1,490 @@
> +# HG changeset patch
> +# User dlila
> +# Date 1303995319 14400
> +# Node ID 24f474ad17038b0bef4686c79c8b8de25ab23723
> +# Parent a07c9e09b4caa5690209af460e8c9371b8384cb0
> +7036754: NaNs in stroked quadratics.
> +Summary: Check for them and remove them.
> +Reviewed-by: flar
> +
> +diff -r a07c9e09b4ca -r 24f474ad1703 src/share/classes/sun/java2d/pisces/Stroker.java
> +--- openjdk.orig/jdk/src/share/classes/sun/java2d/pisces/Stroker.java Wed Apr 27 12:15:34 2011 +0400
> ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/Stroker.java Thu Apr 28 08:55:19 2011 -0400
> +@@ -27,6 +27,8 @@
> +
> + import java.util.Arrays;
> + import java.util.Iterator;
> ++import static java.lang.Math.ulp;
> ++import static java.lang.Math.sqrt;
> +
> + import sun.awt.geom.PathConsumer2D;
> +
> +@@ -130,7 +132,7 @@
> + private static void computeOffset(final float lx, final float ly,
> + final float w, final float[] m)
> + {
> +- final float len = (float)Math.sqrt(lx*lx + ly*ly);
> ++ final float len = (float) sqrt(lx*lx + ly*ly);
> + if (len == 0) {
> + m[0] = m[1] = 0;
> + } else {
> +@@ -217,7 +219,7 @@
> + // this normal's length is at least 0.5 and at most sqrt(2)/2 (because
> + // we know the angle of the arc is > 90 degrees).
> + float nx = my - omy, ny = omx - mx;
> +- float nlen = (float)Math.sqrt(nx*nx + ny*ny);
> ++ float nlen = (float) sqrt(nx*nx + ny*ny);
> + float scale = lineWidth2/nlen;
> + float mmx = nx * scale, mmy = ny * scale;
> +
> +@@ -246,8 +248,8 @@
> + // define the bezier curve we're computing.
> + // It is computed using the constraints that P1-P0 and P3-P2 are parallel
> + // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
> +- float cv = (float)((4.0 / 3.0) * Math.sqrt(0.5-cosext2) /
> +- (1.0 + Math.sqrt(cosext2+0.5)));
> ++ float cv = (float) ((4.0 / 3.0) * sqrt(0.5-cosext2) /
> ++ (1.0 + sqrt(cosext2+0.5)));
> + // if clockwise, we need to negate cv.
> + if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
> + cv = -cv;
> +@@ -284,28 +286,20 @@
> + false);
> + }
> +
> +- // Return the intersection point of the lines (x0, y0) -> (x1, y1)
> +- // and (x0p, y0p) -> (x1p, y1p) in m[0] and m[1]
> +- private void computeMiter(final float x0, final float y0,
> +- final float x1, final float y1,
> +- final float x0p, final float y0p,
> +- final float x1p, final float y1p,
> +- final float[] m, int off)
> ++ // Put the intersection point of the lines (x0, y0) -> (x1, y1)
> ++ // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1].
> ++ // If the lines are parallel, it will put a non finite number in m.
> ++ private void computeIntersection(final float x0, final float y0,
> ++ final float x1, final float y1,
> ++ final float x0p, final float y0p,
> ++ final float x1p, final float y1p,
> ++ final float[] m, int off)
> + {
> + float x10 = x1 - x0;
> + float y10 = y1 - y0;
> + float x10p = x1p - x0p;
> + float y10p = y1p - y0p;
> +
> +- // if this is 0, the lines are parallel. If they go in the
> +- // same direction, there is no intersection so m[off] and
> +- // m[off+1] will contain infinity, so no miter will be drawn.
> +- // If they go in the same direction that means that the start of the
> +- // current segment and the end of the previous segment have the same
> +- // tangent, in which case this method won't even be involved in
> +- // miter drawing because it won't be called by drawMiter (because
> +- // (mx == omx && my == omy) will be true, and drawMiter will return
> +- // immediately).
> + float den = x10*y10p - x10p*y10;
> + float t = x10p*(y0-y0p) - y10p*(x0-x0p);
> + t /= den;
> +@@ -321,7 +315,8 @@
> + {
> + if ((mx == omx && my == omy) ||
> + (pdx == 0 && pdy == 0) ||
> +- (dx == 0 && dy == 0)) {
> ++ (dx == 0 && dy == 0))
> ++ {
> + return;
> + }
> +
> +@@ -332,12 +327,17 @@
> + my = -my;
> + }
> +
> +- computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
> +- (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
> +- miter, 0);
> ++ computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
> ++ (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
> ++ miter, 0);
> +
> + float lenSq = (miter[0]-x0)*(miter[0]-x0) + (miter[1]-y0)*(miter[1]-y0);
> +
> ++ // If the lines are parallel, lenSq will be either NaN or +inf
> ++ // (actually, I'm not sure if the latter is possible. The important
> ++ // thing is that -inf is not possible, because lenSq is a square).
> ++ // For both of those values, the comparison below will fail and
> ++ // no miter will be drawn, which is correct.
> + if (lenSq < miterLimitSq) {
> + emitLineTo(miter[0], miter[1], rev);
> + }
> +@@ -566,8 +566,8 @@
> +
> + // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
> + // in which case ignore if p1 == p2
> +- final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2));
> +- final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * Math.ulp(y4));
> ++ final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * ulp(y2));
> ++ final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * ulp(y4));
> + if (p1eqp2 && p3eqp4) {
> + getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
> + return 4;
> +@@ -583,7 +583,7 @@
> + float dotsq = (dx1 * dx4 + dy1 * dy4);
> + dotsq = dotsq * dotsq;
> + float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
> +- if (Helpers.within(dotsq, l1sq * l4sq, 4 * Math.ulp(dotsq))) {
> ++ if (Helpers.within(dotsq, l1sq * l4sq, 4 * ulp(dotsq))) {
> + getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
> + return 4;
> + }
> +@@ -693,8 +693,6 @@
> + return 8;
> + }
> +
> +- // compute offset curves using bezier spline through t=0.5 (i.e.
> +- // ComputedCurve(0.5) == IdealParallelCurve(0.5))
> + // return the kind of curve in the right and left arrays.
> + private int computeOffsetQuad(float[] pts, final int off,
> + float[] leftOff, float[] rightOff)
> +@@ -703,56 +701,67 @@
> + final float x2 = pts[off + 2], y2 = pts[off + 3];
> + final float x3 = pts[off + 4], y3 = pts[off + 5];
> +
> +- float dx3 = x3 - x2;
> +- float dy3 = y3 - y2;
> +- float dx1 = x2 - x1;
> +- float dy1 = y2 - y1;
> ++ final float dx3 = x3 - x2;
> ++ final float dy3 = y3 - y2;
> ++ final float dx1 = x2 - x1;
> ++ final float dy1 = y2 - y1;
> +
> +- // if p1=p2 or p3=p4 it means that the derivative at the endpoint
> +- // vanishes, which creates problems with computeOffset. Usually
> +- // this happens when this stroker object is trying to winden
> +- // a curve with a cusp. What happens is that curveTo splits
> +- // the input curve at the cusp, and passes it to this function.
> +- // because of inaccuracies in the splitting, we consider points
> +- // equal if they're very close to each other.
> ++ // this computes the offsets at t = 0, 1
> ++ computeOffset(dx1, dy1, lineWidth2, offset[0]);
> ++ computeOffset(dx3, dy3, lineWidth2, offset[1]);
> +
> +- // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
> +- // in which case ignore.
> +- final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2));
> +- final boolean p2eqp3 = within(x2,y2,x3,y3, 6 * Math.ulp(y3));
> +- if (p1eqp2 || p2eqp3) {
> +- getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
> +- return 4;
> ++ leftOff[0] = x1 + offset[0][0]; leftOff[1] = y1 + offset[0][1];
> ++ leftOff[4] = x3 + offset[1][0]; leftOff[5] = y3 + offset[1][1];
> ++ rightOff[0] = x1 - offset[0][0]; rightOff[1] = y1 - offset[0][1];
> ++ rightOff[4] = x3 - offset[1][0]; rightOff[5] = y3 - offset[1][1];
> ++
> ++ float x1p = leftOff[0]; // start
> ++ float y1p = leftOff[1]; // point
> ++ float x3p = leftOff[4]; // end
> ++ float y3p = leftOff[5]; // point
> ++
> ++ // Corner cases:
> ++ // 1. If the two control vectors are parallel, we'll end up with NaN's
> ++ // in leftOff (and rightOff in the body of the if below), so we'll
> ++ // do getLineOffsets, which is right.
> ++ // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0)
> ++ // or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1)
> ++ // or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that
> ++ // computeIntersection will put NaN's in leftOff and right off, and
> ++ // we will do getLineOffsets, which is right.
> ++ computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
> ++ float cx = leftOff[2];
> ++ float cy = leftOff[3];
> ++
> ++ if (!(isFinite(cx) && isFinite(cy))) {
> ++ // maybe the right path is not degenerate.
> ++ x1p = rightOff[0];
> ++ y1p = rightOff[1];
> ++ x3p = rightOff[4];
> ++ y3p = rightOff[5];
> ++ computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
> ++ cx = rightOff[2];
> ++ cy = rightOff[3];
> ++ if (!(isFinite(cx) && isFinite(cy))) {
> ++ // both are degenerate. This curve is a line.
> ++ getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
> ++ return 4;
> ++ }
> ++ // {left,right}Off[0,1,4,5] are already set to the correct values.
> ++ leftOff[2] = 2*x2 - cx;
> ++ leftOff[3] = 2*y2 - cy;
> ++ return 6;
> + }
> +
> +- // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
> +- float dotsq = (dx1 * dx3 + dy1 * dy3);
> +- dotsq = dotsq * dotsq;
> +- float l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;
> +- if (Helpers.within(dotsq, l1sq * l3sq, 4 * Math.ulp(dotsq))) {
> +- getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
> +- return 4;
> +- }
> ++ // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2))
> ++ // == 2*(x2, y2) - (left_x2, left_y2)
> ++ rightOff[2] = 2*x2 - cx;
> ++ rightOff[3] = 2*y2 - cy;
> ++ return 6;
> ++ }
> +
> +- // this computes the offsets at t=0, 0.5, 1, using the property that
> +- // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
> +- // the (dx/dt, dy/dt) vectors at the endpoints.
> +- computeOffset(dx1, dy1, lineWidth2, offset[0]);
> +- computeOffset(dx3, dy3, lineWidth2, offset[1]);
> +- float x1p = x1 + offset[0][0]; // start
> +- float y1p = y1 + offset[0][1]; // point
> +- float x3p = x3 + offset[1][0]; // end
> +- float y3p = y3 + offset[1][1]; // point
> +-
> +- computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
> +- leftOff[0] = x1p; leftOff[1] = y1p;
> +- leftOff[4] = x3p; leftOff[5] = y3p;
> +- x1p = x1 - offset[0][0]; y1p = y1 - offset[0][1];
> +- x3p = x3 - offset[1][0]; y3p = y3 - offset[1][1];
> +- computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
> +- rightOff[0] = x1p; rightOff[1] = y1p;
> +- rightOff[4] = x3p; rightOff[5] = y3p;
> +- return 6;
> ++ private static boolean isFinite(float x) {
> ++ return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY);
> + }
> +
> + // This is where the curve to be processed is put. We give it
> +@@ -812,12 +821,12 @@
> + // if these vectors are too small, normalize them, to avoid future
> + // precision problems.
> + if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
> +- float len = (float)Math.sqrt(dxs*dxs + dys*dys);
> ++ float len = (float) sqrt(dxs*dxs + dys*dys);
> + dxs /= len;
> + dys /= len;
> + }
> + if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
> +- float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
> ++ float len = (float) sqrt(dxf*dxf + dyf*dyf);
> + dxf /= len;
> + dyf /= len;
> + }
> +@@ -834,7 +843,6 @@
> + while(it.hasNext()) {
> + int curCurveOff = it.next();
> +
> +- kind = 0;
> + switch (type) {
> + case 8:
> + kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
> +@@ -843,24 +851,22 @@
> + kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
> + break;
> + }
> +- if (kind != 0) {
> +- emitLineTo(lp[0], lp[1]);
> +- switch(kind) {
> +- case 8:
> +- emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
> +- emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
> +- break;
> +- case 6:
> +- emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
> +- emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
> +- break;
> +- case 4:
> +- emitLineTo(lp[2], lp[3]);
> +- emitLineTo(rp[0], rp[1], true);
> +- break;
> +- }
> +- emitLineTo(rp[kind - 2], rp[kind - 1], true);
> ++ emitLineTo(lp[0], lp[1]);
> ++ switch(kind) {
> ++ case 8:
> ++ emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
> ++ emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
> ++ break;
> ++ case 6:
> ++ emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
> ++ emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
> ++ break;
> ++ case 4:
> ++ emitLineTo(lp[2], lp[3]);
> ++ emitLineTo(rp[0], rp[1], true);
> ++ break;
> + }
> ++ emitLineTo(rp[kind - 2], rp[kind - 1], true);
> + }
> +
> + this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
> +@@ -887,7 +893,7 @@
> + // we rotate it so that the first vector in the control polygon is
> + // parallel to the x-axis. This will ensure that rotated quarter
> + // circles won't be subdivided.
> +- final float hypot = (float)Math.sqrt(x12 * x12 + y12 * y12);
> ++ final float hypot = (float) sqrt(x12 * x12 + y12 * y12);
> + final float cos = x12 / hypot;
> + final float sin = y12 / hypot;
> + final float x1 = cos * pts[0] + sin * pts[1];
> +@@ -976,12 +982,12 @@
> + // if these vectors are too small, normalize them, to avoid future
> + // precision problems.
> + if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
> +- float len = (float)Math.sqrt(dxs*dxs + dys*dys);
> ++ float len = (float) sqrt(dxs*dxs + dys*dys);
> + dxs /= len;
> + dys /= len;
> + }
> + if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
> +- float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
> ++ float len = (float) sqrt(dxf*dxf + dyf*dyf);
> + dxf /= len;
> + dyf /= len;
> + }
> +@@ -999,20 +1005,18 @@
> + int curCurveOff = it.next();
> +
> + kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
> +- if (kind != 0) {
> +- emitLineTo(lp[0], lp[1]);
> +- switch(kind) {
> +- case 8:
> +- emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
> +- emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
> +- break;
> +- case 4:
> +- emitLineTo(lp[2], lp[3]);
> +- emitLineTo(rp[0], rp[1], true);
> +- break;
> +- }
> +- emitLineTo(rp[kind - 2], rp[kind - 1], true);
> ++ emitLineTo(lp[0], lp[1]);
> ++ switch(kind) {
> ++ case 8:
> ++ emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
> ++ emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
> ++ break;
> ++ case 4:
> ++ emitLineTo(lp[2], lp[3]);
> ++ emitLineTo(rp[0], rp[1], true);
> ++ break;
> + }
> ++ emitLineTo(rp[kind - 2], rp[kind - 1], true);
> + }
> +
> + this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
> +@@ -1050,12 +1054,12 @@
> + // if these vectors are too small, normalize them, to avoid future
> + // precision problems.
> + if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
> +- float len = (float)Math.sqrt(dxs*dxs + dys*dys);
> ++ float len = (float) sqrt(dxs*dxs + dys*dys);
> + dxs /= len;
> + dys /= len;
> + }
> + if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
> +- float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
> ++ float len = (float) sqrt(dxf*dxf + dyf*dyf);
> + dxf /= len;
> + dyf /= len;
> + }
> +@@ -1073,20 +1077,18 @@
> + int curCurveOff = it.next();
> +
> + kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
> +- if (kind != 0) {
> +- emitLineTo(lp[0], lp[1]);
> +- switch(kind) {
> +- case 6:
> +- emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
> +- emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
> +- break;
> +- case 4:
> +- emitLineTo(lp[2], lp[3]);
> +- emitLineTo(rp[0], rp[1], true);
> +- break;
> +- }
> +- emitLineTo(rp[kind - 2], rp[kind - 1], true);
> ++ emitLineTo(lp[0], lp[1]);
> ++ switch(kind) {
> ++ case 6:
> ++ emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
> ++ emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
> ++ break;
> ++ case 4:
> ++ emitLineTo(lp[2], lp[3]);
> ++ emitLineTo(rp[0], rp[1], true);
> ++ break;
> + }
> ++ emitLineTo(rp[kind - 2], rp[kind - 1], true);
> + }
> +
> + this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
> +diff -r a07c9e09b4ca -r 24f474ad1703 test/sun/java2d/pisces/Test7036754.java
> +--- /dev/null Thu Jan 01 00:00:00 1970 +0000
> ++++ openjdk/jdk/test/sun/java2d/pisces/Test7036754.java Thu Apr 28 08:55:19 2011 -0400
> +@@ -0,0 +1,58 @@
> ++/*
> ++ * Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
> ++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
> ++ *
> ++ * This code is free software; you can redistribute it and/or modify it
> ++ * under the terms of the GNU General Public License version 2 only, as
> ++ * published by the Free Software Foundation.
> ++ *
> ++ * This code is distributed in the hope that it will be useful, but WITHOUT
> ++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> ++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
> ++ * version 2 for more details (a copy is included in the LICENSE file that
> ++ * accompanied this code).
> ++ *
> ++ * You should have received a copy of the GNU General Public License version
> ++ * 2 along with this work; if not, write to the Free Software Foundation,
> ++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
> ++ *
> ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
> ++ * or visit www.oracle.com if you need additional information or have any
> ++ * questions.
> ++ */
> ++
> ++/**
> ++ * @test
> ++ * @bug 7036754
> ++ *
> ++ * @summary Verifies that there are no non-finite numbers when stroking
> ++ * certain quadratic curves.
> ++ *
> ++ * @author Jim Graham
> ++ * @run main Test7036754
> ++ */
> ++
> ++import java.awt.*;
> ++import java.awt.geom.*;
> ++
> ++public class Test7036754 {
> ++ public static void main(String argv[]) {
> ++ Shape s = new QuadCurve2D.Float(839.24677f, 508.97888f,
> ++ 839.2953f, 508.97122f,
> ++ 839.3438f, 508.96353f);
> ++ s = new BasicStroke(10f).createStrokedShape(s);
> ++ float nsegs[] = {2, 2, 4, 6, 0};
> ++ float coords[] = new float[6];
> ++ PathIterator pi = s.getPathIterator(null);
> ++ while (!pi.isDone()) {
> ++ int type = pi.currentSegment(coords);
> ++ for (int i = 0; i < nsegs[type]; i++) {
> ++ float c = coords[i];
> ++ if (Float.isNaN(c) || Float.isInfinite(c)) {
> ++ throw new RuntimeException("bad value in stroke");
> ++ }
> ++ }
> ++ pi.next();
> ++ }
> ++ }
> ++}
> +exporting patch:
> +<fdopen>
--
Andrew :)
Free Java Software Engineer
Red Hat, Inc. (http://www.redhat.com)
Support Free Java!
Contribute to GNU Classpath and IcedTea
http://www.gnu.org/software/classpath
http://icedtea.classpath.org
PGP Key: F5862A37 (https://keys.indymedia.org/)
Fingerprint = EA30 D855 D50F 90CD F54D 0698 0713 C3ED F586 2A37
More information about the distro-pkg-dev
mailing list