/hg/icedtea6: Fix problem where NaNs could appear in stroked qua...

dlila at icedtea.classpath.org dlila at icedtea.classpath.org
Wed May 4 07:22:19 PDT 2011


changeset b71a752b9762 in /hg/icedtea6
details: http://icedtea.classpath.org/hg/icedtea6?cmd=changeset;node=b71a752b9762
author: Denis Lila <dlila at redhat.com>
date: Wed May 04 10:09:47 2011 -0400

	Fix problem where NaNs could appear in stroked quad paths. Improve
	performance of quad stroking.


diffstat:

 ChangeLog                                 |    7 +
 Makefile.am                               |    3 +-
 NEWS                                      |    1 +
 patches/openjdk/7036754-stroker-nan.patch |  488 ++++++++++++++++++++++++++++++
 4 files changed, 498 insertions(+), 1 deletions(-)

diffs (truncated from 532 to 500 lines):

diff -r 74bcdece2162 -r b71a752b9762 ChangeLog
--- a/ChangeLog	Wed May 04 15:06:24 2011 +0200
+++ b/ChangeLog	Wed May 04 10:09:47 2011 -0400
@@ -1,3 +1,10 @@
+2011-05-04  Denis Lila <dlila at redhat.com>
+
+	* Makefile.am: Apply patch.
+	* NEWS: Update with backport.
+	* patches/openjdk/7036754-stroker-nan.patch: New patch. Fix NaN
+	quad stroking problem.
+
 2011-05-04  Xerxes RÃ¥nby  <xerxes at zafena.se>
 
 	* .hgtags Update.
diff -r 74bcdece2162 -r b71a752b9762 Makefile.am
--- a/Makefile.am	Wed May 04 15:06:24 2011 +0200
+++ b/Makefile.am	Wed May 04 10:09:47 2011 -0400
@@ -338,7 +338,8 @@
 	patches/hotspot/$(HSBUILD)/7032388-work_without_cmov_instruction.patch \
 	patches/openjdk/7031385-gcc-register-allocation-fix.patch \
 	patches/shark-llvm-2.9.patch \
-	patches/openjdk/6986968-crash_on_xim_restart.patch
+	patches/openjdk/6986968-crash_on_xim_restart.patch \
+	patches/openjdk/7036754-stroker-nan.patch
 
 if WITH_ALT_HSBUILD
 ICEDTEA_PATCHES += \
diff -r 74bcdece2162 -r b71a752b9762 NEWS
--- a/NEWS	Wed May 04 15:06:24 2011 +0200
+++ b/NEWS	Wed May 04 10:09:47 2011 -0400
@@ -23,6 +23,7 @@
   - S7029905: demo applets missing some html files
   - S6986968: Crash on XIM server restart
   - S7018387: Xrender pipeline may leak GC's
+  - S7036754: Stroked quads sometimes contain NaN
 * Bug fixes
   - PR637: make check should exit with an error code if any regression test failed.
   - G356743: Support libpng 1.5.
diff -r 74bcdece2162 -r b71a752b9762 patches/openjdk/7036754-stroker-nan.patch
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/patches/openjdk/7036754-stroker-nan.patch	Wed May 04 10:09:47 2011 -0400
@@ -0,0 +1,490 @@
+# HG changeset patch
+# User dlila
+# Date 1303995319 14400
+# Node ID 24f474ad17038b0bef4686c79c8b8de25ab23723
+# Parent  a07c9e09b4caa5690209af460e8c9371b8384cb0
+7036754: NaNs in stroked quadratics.
+Summary: Check for them and remove them.
+Reviewed-by: flar
+
+diff -r a07c9e09b4ca -r 24f474ad1703 src/share/classes/sun/java2d/pisces/Stroker.java
+--- openjdk.orig/jdk/src/share/classes/sun/java2d/pisces/Stroker.java	Wed Apr 27 12:15:34 2011 +0400
++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/Stroker.java	Thu Apr 28 08:55:19 2011 -0400
+@@ -27,6 +27,8 @@
+ 
+ import java.util.Arrays;
+ import java.util.Iterator;
++import static java.lang.Math.ulp;
++import static java.lang.Math.sqrt;
+ 
+ import sun.awt.geom.PathConsumer2D;
+ 
+@@ -130,7 +132,7 @@
+     private static void computeOffset(final float lx, final float ly,
+                                       final float w, final float[] m)
+     {
+-        final float len = (float)Math.sqrt(lx*lx + ly*ly);
++        final float len = (float) sqrt(lx*lx + ly*ly);
+         if (len == 0) {
+             m[0] = m[1] = 0;
+         } else {
+@@ -217,7 +219,7 @@
+             // this normal's length is at least 0.5 and at most sqrt(2)/2 (because
+             // we know the angle of the arc is > 90 degrees).
+             float nx = my - omy, ny = omx - mx;
+-            float nlen = (float)Math.sqrt(nx*nx + ny*ny);
++            float nlen = (float) sqrt(nx*nx + ny*ny);
+             float scale = lineWidth2/nlen;
+             float mmx = nx * scale, mmy = ny * scale;
+ 
+@@ -246,8 +248,8 @@
+         // define the bezier curve we're computing.
+         // It is computed using the constraints that P1-P0 and P3-P2 are parallel
+         // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
+-        float cv = (float)((4.0 / 3.0) * Math.sqrt(0.5-cosext2) /
+-                           (1.0 + Math.sqrt(cosext2+0.5)));
++        float cv = (float) ((4.0 / 3.0) * sqrt(0.5-cosext2) /
++                            (1.0 + sqrt(cosext2+0.5)));
+         // if clockwise, we need to negate cv.
+         if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
+             cv = -cv;
+@@ -284,28 +286,20 @@
+                     false);
+     }
+ 
+-    // Return the intersection point of the lines (x0, y0) -> (x1, y1)
+-    // and (x0p, y0p) -> (x1p, y1p) in m[0] and m[1]
+-    private void computeMiter(final float x0, final float y0,
+-                              final float x1, final float y1,
+-                              final float x0p, final float y0p,
+-                              final float x1p, final float y1p,
+-                              final float[] m, int off)
++    // Put the intersection point of the lines (x0, y0) -> (x1, y1)
++    // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1].
++    // If the lines are parallel, it will put a non finite number in m.
++    private void computeIntersection(final float x0, final float y0,
++                                     final float x1, final float y1,
++                                     final float x0p, final float y0p,
++                                     final float x1p, final float y1p,
++                                     final float[] m, int off)
+     {
+         float x10 = x1 - x0;
+         float y10 = y1 - y0;
+         float x10p = x1p - x0p;
+         float y10p = y1p - y0p;
+ 
+-        // if this is 0, the lines are parallel. If they go in the
+-        // same direction, there is no intersection so m[off] and
+-        // m[off+1] will contain infinity, so no miter will be drawn.
+-        // If they go in the same direction that means that the start of the
+-        // current segment and the end of the previous segment have the same
+-        // tangent, in which case this method won't even be involved in
+-        // miter drawing because it won't be called by drawMiter (because
+-        // (mx == omx && my == omy) will be true, and drawMiter will return
+-        // immediately).
+         float den = x10*y10p - x10p*y10;
+         float t = x10p*(y0-y0p) - y10p*(x0-x0p);
+         t /= den;
+@@ -321,7 +315,8 @@
+     {
+         if ((mx == omx && my == omy) ||
+             (pdx == 0 && pdy == 0) ||
+-            (dx == 0 && dy == 0)) {
++            (dx == 0 && dy == 0))
++        {
+             return;
+         }
+ 
+@@ -332,12 +327,17 @@
+             my = -my;
+         }
+ 
+-        computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
+-                     (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
+-                     miter, 0);
++        computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
++                            (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
++                            miter, 0);
+ 
+         float lenSq = (miter[0]-x0)*(miter[0]-x0) + (miter[1]-y0)*(miter[1]-y0);
+ 
++        // If the lines are parallel, lenSq will be either NaN or +inf
++        // (actually, I'm not sure if the latter is possible. The important
++        // thing is that -inf is not possible, because lenSq is a square).
++        // For both of those values, the comparison below will fail and
++        // no miter will be drawn, which is correct.
+         if (lenSq < miterLimitSq) {
+             emitLineTo(miter[0], miter[1], rev);
+         }
+@@ -566,8 +566,8 @@
+ 
+         // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
+         // in which case ignore if p1 == p2
+-        final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2));
+-        final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * Math.ulp(y4));
++        final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * ulp(y2));
++        final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * ulp(y4));
+         if (p1eqp2 && p3eqp4) {
+             getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
+             return 4;
+@@ -583,7 +583,7 @@
+         float dotsq = (dx1 * dx4 + dy1 * dy4);
+         dotsq = dotsq * dotsq;
+         float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
+-        if (Helpers.within(dotsq, l1sq * l4sq, 4 * Math.ulp(dotsq))) {
++        if (Helpers.within(dotsq, l1sq * l4sq, 4 * ulp(dotsq))) {
+             getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
+             return 4;
+         }
+@@ -693,8 +693,6 @@
+         return 8;
+     }
+ 
+-    // compute offset curves using bezier spline through t=0.5 (i.e.
+-    // ComputedCurve(0.5) == IdealParallelCurve(0.5))
+     // return the kind of curve in the right and left arrays.
+     private int computeOffsetQuad(float[] pts, final int off,
+                                   float[] leftOff, float[] rightOff)
+@@ -703,56 +701,67 @@
+         final float x2 = pts[off + 2], y2 = pts[off + 3];
+         final float x3 = pts[off + 4], y3 = pts[off + 5];
+ 
+-        float dx3 = x3 - x2;
+-        float dy3 = y3 - y2;
+-        float dx1 = x2 - x1;
+-        float dy1 = y2 - y1;
++        final float dx3 = x3 - x2;
++        final float dy3 = y3 - y2;
++        final float dx1 = x2 - x1;
++        final float dy1 = y2 - y1;
+ 
+-        // if p1=p2 or p3=p4 it means that the derivative at the endpoint
+-        // vanishes, which creates problems with computeOffset. Usually
+-        // this happens when this stroker object is trying to winden
+-        // a curve with a cusp. What happens is that curveTo splits
+-        // the input curve at the cusp, and passes it to this function.
+-        // because of inaccuracies in the splitting, we consider points
+-        // equal if they're very close to each other.
++        // this computes the offsets at t = 0, 1
++        computeOffset(dx1, dy1, lineWidth2, offset[0]);
++        computeOffset(dx3, dy3, lineWidth2, offset[1]);
+ 
+-        // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
+-        // in which case ignore.
+-        final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2));
+-        final boolean p2eqp3 = within(x2,y2,x3,y3, 6 * Math.ulp(y3));
+-        if (p1eqp2 || p2eqp3) {
+-            getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
+-            return 4;
++        leftOff[0]  = x1 + offset[0][0];  leftOff[1] = y1 + offset[0][1];
++        leftOff[4]  = x3 + offset[1][0];  leftOff[5] = y3 + offset[1][1];
++        rightOff[0] = x1 - offset[0][0]; rightOff[1] = y1 - offset[0][1];
++        rightOff[4] = x3 - offset[1][0]; rightOff[5] = y3 - offset[1][1];
++
++        float x1p = leftOff[0]; // start
++        float y1p = leftOff[1]; // point
++        float x3p = leftOff[4]; // end
++        float y3p = leftOff[5]; // point
++
++        // Corner cases:
++        // 1. If the two control vectors are parallel, we'll end up with NaN's
++        //    in leftOff (and rightOff in the body of the if below), so we'll
++        //    do getLineOffsets, which is right.
++        // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0)
++        //    or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1)
++        //    or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that
++        //    computeIntersection will put NaN's in leftOff and right off, and
++        //    we will do getLineOffsets, which is right.
++        computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
++        float cx = leftOff[2];
++        float cy = leftOff[3];
++
++        if (!(isFinite(cx) && isFinite(cy))) {
++            // maybe the right path is not degenerate.
++            x1p = rightOff[0];
++            y1p = rightOff[1];
++            x3p = rightOff[4];
++            y3p = rightOff[5];
++            computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
++            cx = rightOff[2];
++            cy = rightOff[3];
++            if (!(isFinite(cx) && isFinite(cy))) {
++                // both are degenerate. This curve is a line.
++                getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
++                return 4;
++            }
++            // {left,right}Off[0,1,4,5] are already set to the correct values.
++            leftOff[2] = 2*x2 - cx;
++            leftOff[3] = 2*y2 - cy;
++            return 6;
+         }
+ 
+-        // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
+-        float dotsq = (dx1 * dx3 + dy1 * dy3);
+-        dotsq = dotsq * dotsq;
+-        float l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;
+-        if (Helpers.within(dotsq, l1sq * l3sq, 4 * Math.ulp(dotsq))) {
+-            getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
+-            return 4;
+-        }
++        // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2))
++        // == 2*(x2, y2) - (left_x2, left_y2)
++        rightOff[2] = 2*x2 - cx;
++        rightOff[3] = 2*y2 - cy;
++        return 6;
++    }
+ 
+-        // this computes the offsets at t=0, 0.5, 1, using the property that
+-        // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
+-        // the (dx/dt, dy/dt) vectors at the endpoints.
+-        computeOffset(dx1, dy1, lineWidth2, offset[0]);
+-        computeOffset(dx3, dy3, lineWidth2, offset[1]);
+-        float x1p = x1 + offset[0][0]; // start
+-        float y1p = y1 + offset[0][1]; // point
+-        float x3p = x3 + offset[1][0]; // end
+-        float y3p = y3 + offset[1][1]; // point
+-
+-        computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
+-        leftOff[0] = x1p; leftOff[1] = y1p;
+-        leftOff[4] = x3p; leftOff[5] = y3p;
+-        x1p = x1 - offset[0][0]; y1p = y1 - offset[0][1];
+-        x3p = x3 - offset[1][0]; y3p = y3 - offset[1][1];
+-        computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
+-        rightOff[0] = x1p; rightOff[1] = y1p;
+-        rightOff[4] = x3p; rightOff[5] = y3p;
+-        return 6;
++    private static boolean isFinite(float x) {
++        return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY);
+     }
+ 
+     // This is where the curve to be processed is put. We give it
+@@ -812,12 +821,12 @@
+         // if these vectors are too small, normalize them, to avoid future
+         // precision problems.
+         if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
+-            float len = (float)Math.sqrt(dxs*dxs + dys*dys);
++            float len = (float) sqrt(dxs*dxs + dys*dys);
+             dxs /= len;
+             dys /= len;
+         }
+         if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
+-            float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
++            float len = (float) sqrt(dxf*dxf + dyf*dyf);
+             dxf /= len;
+             dyf /= len;
+         }
+@@ -834,7 +843,6 @@
+         while(it.hasNext()) {
+             int curCurveOff = it.next();
+ 
+-            kind = 0;
+             switch (type) {
+             case 8:
+                 kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
+@@ -843,24 +851,22 @@
+                 kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
+                 break;
+             }
+-            if (kind != 0) {
+-                emitLineTo(lp[0], lp[1]);
+-                switch(kind) {
+-                case 8:
+-                    emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
+-                    emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
+-                    break;
+-                case 6:
+-                    emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
+-                    emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
+-                    break;
+-                case 4:
+-                    emitLineTo(lp[2], lp[3]);
+-                    emitLineTo(rp[0], rp[1], true);
+-                    break;
+-                }
+-                emitLineTo(rp[kind - 2], rp[kind - 1], true);
++            emitLineTo(lp[0], lp[1]);
++            switch(kind) {
++            case 8:
++                emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
++                emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
++                break;
++            case 6:
++                emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
++                emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
++                break;
++            case 4:
++                emitLineTo(lp[2], lp[3]);
++                emitLineTo(rp[0], rp[1], true);
++                break;
+             }
++            emitLineTo(rp[kind - 2], rp[kind - 1], true);
+         }
+ 
+         this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
+@@ -887,7 +893,7 @@
+             // we rotate it so that the first vector in the control polygon is
+             // parallel to the x-axis. This will ensure that rotated quarter
+             // circles won't be subdivided.
+-            final float hypot = (float)Math.sqrt(x12 * x12 + y12 * y12);
++            final float hypot = (float) sqrt(x12 * x12 + y12 * y12);
+             final float cos = x12 / hypot;
+             final float sin = y12 / hypot;
+             final float x1 = cos * pts[0] + sin * pts[1];
+@@ -976,12 +982,12 @@
+         // if these vectors are too small, normalize them, to avoid future
+         // precision problems.
+         if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
+-            float len = (float)Math.sqrt(dxs*dxs + dys*dys);
++            float len = (float) sqrt(dxs*dxs + dys*dys);
+             dxs /= len;
+             dys /= len;
+         }
+         if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
+-            float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
++            float len = (float) sqrt(dxf*dxf + dyf*dyf);
+             dxf /= len;
+             dyf /= len;
+         }
+@@ -999,20 +1005,18 @@
+             int curCurveOff = it.next();
+ 
+             kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
+-            if (kind != 0) {
+-                emitLineTo(lp[0], lp[1]);
+-                switch(kind) {
+-                case 8:
+-                    emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
+-                    emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
+-                    break;
+-                case 4:
+-                    emitLineTo(lp[2], lp[3]);
+-                    emitLineTo(rp[0], rp[1], true);
+-                    break;
+-                }
+-                emitLineTo(rp[kind - 2], rp[kind - 1], true);
++            emitLineTo(lp[0], lp[1]);
++            switch(kind) {
++            case 8:
++                emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
++                emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
++                break;
++            case 4:
++                emitLineTo(lp[2], lp[3]);
++                emitLineTo(rp[0], rp[1], true);
++                break;
+             }
++            emitLineTo(rp[kind - 2], rp[kind - 1], true);
+         }
+ 
+         this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
+@@ -1050,12 +1054,12 @@
+         // if these vectors are too small, normalize them, to avoid future
+         // precision problems.
+         if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
+-            float len = (float)Math.sqrt(dxs*dxs + dys*dys);
++            float len = (float) sqrt(dxs*dxs + dys*dys);
+             dxs /= len;
+             dys /= len;
+         }
+         if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
+-            float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
++            float len = (float) sqrt(dxf*dxf + dyf*dyf);
+             dxf /= len;
+             dyf /= len;
+         }
+@@ -1073,20 +1077,18 @@
+             int curCurveOff = it.next();
+ 
+             kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
+-            if (kind != 0) {
+-                emitLineTo(lp[0], lp[1]);
+-                switch(kind) {
+-                case 6:
+-                    emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
+-                    emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
+-                    break;
+-                case 4:
+-                    emitLineTo(lp[2], lp[3]);
+-                    emitLineTo(rp[0], rp[1], true);
+-                    break;
+-                }
+-                emitLineTo(rp[kind - 2], rp[kind - 1], true);
++            emitLineTo(lp[0], lp[1]);
++            switch(kind) {
++            case 6:
++                emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
++                emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
++                break;
++            case 4:
++                emitLineTo(lp[2], lp[3]);
++                emitLineTo(rp[0], rp[1], true);
++                break;
+             }
++            emitLineTo(rp[kind - 2], rp[kind - 1], true);
+         }
+ 
+         this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
+diff -r a07c9e09b4ca -r 24f474ad1703 test/sun/java2d/pisces/Test7036754.java
+--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
++++ openjdk/jdk/test/sun/java2d/pisces/Test7036754.java	Thu Apr 28 08:55:19 2011 -0400
+@@ -0,0 +1,58 @@
++/*
++ * Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ */
++
++/**
++ * @test
++ * @bug     7036754
++ *
++ * @summary Verifies that there are no non-finite numbers when stroking



More information about the distro-pkg-dev mailing list