Vector API performance variation with arrays, byte arrays or byte buffers

Paul Sandoz paul.sandoz at oracle.com
Thu Mar 12 17:33:41 UTC 2020


Thanks for explaining.  I have a better appreciation of the problem.  I was trawling through the source code searching for usages of Op_MemBarCPUOrder and concluded you must of done something special.

In principle we should be able to trust the double register arguments passed to the vector load/store intrinsics as if they were used for field or array accesses?  I presume its hard to propagate that trust?

Paul.

> On Mar 12, 2020, at 6:41 AM, Vladimir Ivanov <vladimir.x.ivanov at oracle.com> wrote:
> 
> I made an attempt [1] to disambiguate on-/off-heap cases and got some promising results:
> 
> Before:
>  vectorArrayArray      4324400.963 ± 15860.271  ops/s
>  vectorDirectDirectBB  1466029.753 ± 20695.287  ops/s
>  vectorHeapHeapBB      1588239.882 ± 26866.547  ops/s
>  vectorMixedMixedBB    1562751.985 ±  4030.195  ops/s
> 
> vs
> 
> After:
> 
>  vectorArrayArray      6142945.618 ± 29510.409  ops/s
>  vectorDirectDirectBB  9378799.915 ± 75314.175  ops/s
>  vectorHeapHeapBB      7470962.611 ± 88597.635  ops/s
>  vectorMixedMixedBB    1602557.365 ± 10859.592  ops/s
> 
> 
> But profile pollution is still a problem (at least, for on-heap case):
> 
> -f 0:
>  vectorArrayArray      5700371.818 ±  35667.373  ops/s
>  vectorBufferBufferBB  9243089.668 ± 340918.224  ops/s
>  vectorHeapHeapBB      1155846.181 ±  12768.211  ops/s
>  vectorMixedMixedBB    1492740.924 ±  22736.938  ops/s
> 
> Best regards,
> Vladimir Ivanov
> 
> [1]
> 
> diff --git a/src/java.base/share/classes/java/nio/X-Buffer.java.template b/src/java.base/share/classes/java/nio/X-Buffer.java.template
> --- a/src/java.base/share/classes/java/nio/X-Buffer.java.template
> +++ b/src/java.base/share/classes/java/nio/X-Buffer.java.template
> @@ -303,7 +303,7 @@
> 
>     @Override
>     Object base() {
> -        return hb;
> +        return Objects.requireNonNull(hb);
>     }
> 
> #if[byte]
> diff --git a/src/java.base/share/classes/module-info.java b/src/java.base/share/classes/module-info.java
> --- a/src/java.base/share/classes/module-info.java
> +++ b/src/java.base/share/classes/module-info.java
> @@ -152,7 +152,8 @@
>         java.rmi,
>         jdk.jlink,
>         jdk.net,
> -        jdk.incubator.foreign;
> +        jdk.incubator.foreign,
> +        jdk.incubator.vector;
>     exports jdk.internal.access.foreign to
>         jdk.incubator.foreign;
>     exports jdk.internal.event to
> diff --git a/src/jdk.incubator.vector/share/classes/jdk/incubator/vector/VectorIntrinsics.java b/src/jdk.incubator.vector/share/classes/jdk/incubator/vector/VectorIntrinsics.java
> --- a/src/jdk.incubator.vector/share/classes/jdk/incubator/vector/VectorIntrinsics.java
> +++ b/src/jdk.incubator.vector/share/classes/jdk/incubator/vector/VectorIntrinsics.java
> @@ -1,6 +1,8 @@
> package jdk.incubator.vector;
> 
> import jdk.internal.HotSpotIntrinsicCandidate;
> +import jdk.internal.access.JavaNioAccess;
> +import jdk.internal.access.SharedSecrets;
> import jdk.internal.misc.Unsafe;
> import jdk.internal.vm.annotation.ForceInline;
> 
> @@ -570,16 +572,17 @@
>         return U.getMaxVectorSize(etype);
>     }
> 
> +    private static final JavaNioAccess JNA = SharedSecrets.getJavaNioAccess();
> 
>     /*package-private*/
>     @ForceInline
>     static Object bufferBase(ByteBuffer bb) {
> -        return U.getReference(bb, BYTE_BUFFER_HB);
> +        return JNA.getBufferBase(bb);
>     }
> 
>     /*package-private*/
>     @ForceInline
>     static long bufferAddress(ByteBuffer bb, long offset) {
> -        return U.getLong(bb, BUFFER_ADDRESS) + offset;
> +        return JNA.getBufferAddress(bb) + offset;
>     }
> }
> 
> On 12.03.2020 11:52, Vladimir Ivanov wrote:
>>>> Membars are the culprit, but once they are gone, 
>>> 
>>> Ah, yes! What -XX option dod you use to disable insertion of the barrier?
>>> How can we make those go away? IIRC some work was done in Panama to fix this?
>> Unfortunately, no flags are available. Just a quick-n-dirty hack for now [1].
>> There was some work to avoid barriers around off-heap accesses [2], but here the problem is with mixed accesses.
>> For mixed access, there was additional profiling introduced [3] to enable speculative disambiguation, but even if we enable something similar for VectorIntrinsics.load/store it won't help: profile pollution will defeat it pretty quickly.
>> I haven't thought it through yet, but possible answer could be to specialize the implementation for heap and direct buffers. Not sure about the implementation details though, so more experiments are needed.
>> Best regards,
>> Vladimir Ivanov
>> [1]
>> diff --git a/src/hotspot/share/opto/library_call.cpp b/src/hotspot/share/opto/library_call.cpp
>> --- a/src/hotspot/share/opto/library_call.cpp
>> +++ b/src/hotspot/share/opto/library_call.cpp
>> @@ -7432,6 +7432,8 @@
>>    const TypePtr *addr_type = gvn().type(addr)->isa_ptr();
>>    const TypeAryPtr* arr_type = addr_type->isa_aryptr();
>> +  bool needs_cpu_membar = can_access_non_heap && (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR);
>> +
>>    // Now handle special case where load/store happens from/to byte array but element type is not byte.
>>    bool using_byte_array = arr_type != NULL && arr_type->elem()->array_element_basic_type() == T_BYTE && elem_bt != T_BYTE;
>>    // Handle loading masks.
>> @@ -7473,7 +7475,7 @@
>>    const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
>> -  if (can_access_non_heap) {
>> +  if (needs_cpu_membar && !UseNewCode) {
>>      insert_mem_bar(Op_MemBarCPUOrder);
>>    }
>> @@ -7517,7 +7519,7 @@
>>      set_vector_result(box);
>>    }
>> -  if (can_access_non_heap) {
>> +  if (needs_cpu_membar && !UseNewCode) {
>>      insert_mem_bar(Op_MemBarCPUOrder);
>>    }
>> diff --git a/src/hotspot/share/opto/loopTransform.cpp b/src/hotspot/share/opto/loopTransform.cpp
>> --- a/src/hotspot/share/opto/loopTransform.cpp
>> +++ b/src/hotspot/share/opto/loopTransform.cpp
>> @@ -781,7 +781,7 @@
>>    }
>>    // Check for initial stride being a small enough constant
>> -  if (abs(cl->stride_con()) > (1<<2)*future_unroll_cnt) return false;
>> +  if (!UseNewCode2 && abs(cl->stride_con()) > (1<<2)*future_unroll_cnt) return false;
>>    // Don't unroll if the next round of unrolling would push us
>>    // over the expected trip count of the loop.  One is subtracted
>> [2] https://bugs.openjdk.java.net/browse/JDK-8226411
>> [3] https://bugs.openjdk.java.net/browse/JDK-8181211
>>>> C2 unrolling heuristics need some tweaking as well: it doesn't unroll loops with large strides (8*8 = 32).
>>>> 
>>>> Once membars are gone and unrolling is fixed, the scores become in favor of direct buffers (my guess is due to alignment):
>>>> 
>>>> Before:
>>>> 
>>>>  -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=2:
>>>>    vectorArrayArray      5738494.127 ± 52704.256  ops/s
>>>>    vectorBufferBuffer    1584747.638 ± 35644.433  ops/s
>>>> 
>>>>  -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=0:
>>>>    vectorArrayArray      5705607.529 ±  118589.894  ops/s
>>>>    vectorBufferBuffer    2573858.340 ±   3322.248  ops/s
>>>> 
>>>> vs
>>>> 
>>>> After (no membars + unrolling):
>>>> 
>>>>  -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=[0,2]:
>>>>    vectorArrayArray      7961232.893 ± 59427.218  ops/s
>>>>    vectorBufferBuffer    8600848.228 ± 84322.430  ops/s
>>>> 
>>>> Best regards,
>>>> Vladimir Ivanov
>>>> 
>>>>>> On Mar 10, 2020, at 7:51 AM, Antoine Chambille <ach at activeviam.com <mailto:ach at activeviam.com>> wrote:
>>>>>> 
>>>>>> Hi folks,
>>>>>> 
>>>>>> First, the new Vector API is -awesome- and it makes Java the best language
>>>>>> for writing data parallel algorithms, a remarkable turnaround. It reminds
>>>>>> me of when Java 5 became the best language for concurrent programming.
>>>>>> 
>>>>>> I'm benchmarking a use case where you aggregate element wise an array of
>>>>>> doubles into another array of doubles ( ai += bi for each coordinate ).
>>>>>> There are large performance variations depending on whether the data is
>>>>>> held in arrays, byte arrays or byte buffers. Disabling bounds checking
>>>>>> removes some of the overhead but not all. I'm sharing the JMH
>>>>>> microbenchmark below if that can help.
>>>>>> 
>>>>>> 
>>>>>> 
>>>>>> Here are the results of running the benchmark on my laptop with Windows 10
>>>>>> and an Intel core i9-8950HK @2.90GHz
>>>>>> 
>>>>>> 
>>>>>> -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=2
>>>>>> 
>>>>>> Benchmark                  Mode  Cnt        Score        Error  Units
>>>>>> standardArrayArray        thrpt    5  4657680.731 ±  22775.673  ops/s
>>>>>> standardArrayBuffer       thrpt    5  1074170.758 ±  28116.666  ops/s
>>>>>> standardBufferArray       thrpt    5  1066531.757 ±  39990.913  ops/s
>>>>>> standardBufferBuffer      thrpt    5   801500.523 ±  19984.247  ops/s
>>>>>> vectorArrayArray          thrpt    5  7107822.743 ± 454478.273  ops/s
>>>>>> vectorArrayBuffer         thrpt    5  1922263.407 ±  29921.036  ops/s
>>>>>> vectorBufferArray         thrpt    5  2732335.558 ±  81958.886  ops/s
>>>>>> vectorBufferBuffer        thrpt    5  1833276.409 ±  59682.441  ops/s
>>>>>> vectorByteArrayByteArray  thrpt    5  4618267.357 ± 127141.691  ops/s
>>>>>> 
>>>>>> 
>>>>>> 
>>>>>> -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=0
>>>>>> 
>>>>>> Benchmark                  Mode  Cnt        Score        Error  Units
>>>>>> standardArrayArray        thrpt    5  4692286.894 ±  67785.058  ops/s
>>>>>> standardArrayBuffer       thrpt    5  1073420.025 ±  28216.922  ops/s
>>>>>> standardBufferArray       thrpt    5  1066385.323 ±  15700.653  ops/s
>>>>>> standardBufferBuffer      thrpt    5   797741.269 ±  15881.590  ops/s
>>>>>> vectorArrayArray          thrpt    5  8351594.873 ± 153608.251  ops/s
>>>>>> vectorArrayBuffer         thrpt    5  3107638.739 ± 223093.281  ops/s
>>>>>> vectorBufferArray         thrpt    5  3653867.093 ±  75307.265  ops/s
>>>>>> vectorBufferBuffer        thrpt    5  2224031.876 ±  49263.778  ops/s
>>>>>> vectorByteArrayByteArray  thrpt    5  4761018.920 ± 264243.227  ops/s
>>>>>> 
>>>>>> 
>>>>>> 
>>>>>> cheers,
>>>>>> -Antoine
>>>>>> 
>>>>>> 
>>>>>> 
>>>>>> 
>>>>>> 
>>>>>> 
>>>>>> 
>>>>>> 
>>>>>> package com.activeviam;
>>>>>> 
>>>>>> import jdk.incubator.vector.DoubleVector;
>>>>>> import jdk.incubator.vector.VectorSpecies;
>>>>>> import org.openjdk.jmh.annotations.*;
>>>>>> import org.openjdk.jmh.runner.Runner;
>>>>>> import org.openjdk.jmh.runner.options.Options;
>>>>>> import org.openjdk.jmh.runner.options.OptionsBuilder;
>>>>>> 
>>>>>> import java.nio.ByteBuffer;
>>>>>> import java.nio.ByteOrder;
>>>>>> 
>>>>>> /**
>>>>>> * Benchmark the element wise aggregation of an array
>>>>>> * of doubles into another array of doubles, using
>>>>>> * combinations of  java arrays, byte buffers, standard java code
>>>>>> * and the new Vector API.
>>>>>> */
>>>>>> public class AggregationBenchmark {
>>>>>> 
>>>>>>    /** Manually launch JMH */
>>>>>>    public static void main(String[] params) throws Exception {
>>>>>>        Options opt = new OptionsBuilder()
>>>>>>            .include(AggregationBenchmark.class.getSimpleName())
>>>>>>            .forks(1)
>>>>>>            .build();
>>>>>> 
>>>>>>        new Runner(opt).run();
>>>>>>    }
>>>>>> 
>>>>>> 
>>>>>>    @State(Scope.Benchmark)
>>>>>>    public static class Data {
>>>>>>        final static int SIZE = 1024;
>>>>>>        final double[] inputArray;
>>>>>>        final double[] outputArray;
>>>>>>        final byte[] inputByteArray;
>>>>>>        final byte[] outputByteArray;
>>>>>>        final ByteBuffer inputBuffer;
>>>>>>        final ByteBuffer outputBuffer;
>>>>>> 
>>>>>>        public Data() {
>>>>>>            this.inputArray = new double[SIZE];
>>>>>>            this.outputArray = new double[SIZE];
>>>>>>            this.inputByteArray = new byte[8 * SIZE];
>>>>>>            this.outputByteArray = new byte[8 * SIZE];
>>>>>>            this.inputBuffer = ByteBuffer.allocateDirect(8 * SIZE);
>>>>>>            this.outputBuffer = ByteBuffer.allocateDirect(8 * SIZE);
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>>    @Benchmark
>>>>>>    public void standardArrayArray(Data state) {
>>>>>>        final double[] input = state.inputArray;
>>>>>>        final double[] output = state.outputArray;
>>>>>>        for(int i = 0; i < input.length; i++) {
>>>>>>            output[i] += input[i];
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>>    @Benchmark
>>>>>>    public void standardArrayBuffer(Data state) {
>>>>>>        final double[] input = state.inputArray;
>>>>>>        final ByteBuffer output = state.outputBuffer;
>>>>>>        for(int i = 0; i < input.length; i++) {
>>>>>>            output.putDouble(i << 3, output.getDouble(i << 3) + input[i]);
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>>    @Benchmark
>>>>>>    public void standardBufferArray(Data state) {
>>>>>>        final ByteBuffer input = state.inputBuffer;
>>>>>>        final double[] output = state.outputArray;
>>>>>>        for(int i = 0; i < input.capacity(); i+=8) {
>>>>>>            output[i >>> 3] += input.getDouble(i);
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>>    @Benchmark
>>>>>>    public void standardBufferBuffer(Data state) {
>>>>>>        final ByteBuffer input = state.inputBuffer;
>>>>>>        final ByteBuffer output = state.outputBuffer;
>>>>>>        for(int i = 0; i < input.capacity(); i+=8) {
>>>>>>            output.putDouble(i, output.getDouble(i) + input.getDouble(i));
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>> 
>>>>>>    final static VectorSpecies<Double> SPECIES = DoubleVector.SPECIES_MAX;
>>>>>> 
>>>>>>    @Benchmark
>>>>>>    public void vectorArrayArray(Data state) {
>>>>>>        final double[] input = state.inputArray;
>>>>>>        final double[] output = state.outputArray;
>>>>>> 
>>>>>>        for (int i = 0; i < input.length; i+=SPECIES.length()) {
>>>>>>            DoubleVector a = DoubleVector.fromArray(SPECIES, input, i);
>>>>>>            DoubleVector b = DoubleVector.fromArray(SPECIES, output, i);
>>>>>>            a = a.add(b);
>>>>>>            a.intoArray(output, i);
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>>    @Benchmark
>>>>>>    public void vectorByteArrayByteArray(Data state) {
>>>>>>        final byte[] input = state.inputByteArray;
>>>>>>        final byte[] output = state.outputByteArray;
>>>>>> 
>>>>>>        for (int i = 0; i < input.length; i += 8 * SPECIES.length()) {
>>>>>>            DoubleVector a = DoubleVector.fromByteArray(SPECIES, input, i);
>>>>>>            DoubleVector b = DoubleVector.fromByteArray(SPECIES, output, i);
>>>>>>            a = a.add(b);
>>>>>>            a.intoByteArray(output, i);
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>>    @Benchmark
>>>>>>    public void vectorBufferBuffer(Data state) {
>>>>>>        final ByteBuffer input = state.inputBuffer;
>>>>>>        final ByteBuffer output = state.outputBuffer;
>>>>>>        for (int i = 0; i < input.capacity(); i += 8 * SPECIES.length()) {
>>>>>>            DoubleVector a = DoubleVector.fromByteBuffer(SPECIES, input, i,
>>>>>> ByteOrder.nativeOrder());
>>>>>>            DoubleVector b = DoubleVector.fromByteBuffer(SPECIES, output,
>>>>>> i, ByteOrder.nativeOrder());
>>>>>>            a = a.add(b);
>>>>>>            a.intoByteBuffer(output, i, ByteOrder.nativeOrder());
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>>    @Benchmark
>>>>>>    public void vectorArrayBuffer(Data state) {
>>>>>>        final double[] input = state.inputArray;
>>>>>>        final ByteBuffer output = state.outputBuffer;
>>>>>> 
>>>>>>        for (int i = 0; i < input.length; i+=SPECIES.length()) {
>>>>>>            DoubleVector a = DoubleVector.fromArray(SPECIES, input, i);
>>>>>>            DoubleVector b = DoubleVector.fromByteBuffer(SPECIES, output, i
>>>>>> << 3, ByteOrder.nativeOrder());
>>>>>>            a = a.add(b);
>>>>>>            a.intoByteBuffer(output, i << 3, ByteOrder.nativeOrder());
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>>    @Benchmark
>>>>>>    public void vectorBufferArray(Data state) {
>>>>>>        final ByteBuffer input = state.inputBuffer;
>>>>>>        final double[] output = state.outputArray;
>>>>>>        for (int i = 0; i < input.capacity(); i += 8 * SPECIES.length()) {
>>>>>>            DoubleVector a = DoubleVector.fromByteBuffer(SPECIES, input, i,
>>>>>> ByteOrder.nativeOrder());
>>>>>>            DoubleVector b = DoubleVector.fromArray(SPECIES, output, i >>>
>>>>>> 3);
>>>>>>            a = a.add(b);
>>>>>>            a.intoArray(output, i >>> 3);
>>>>>>        }
>>>>>>    }
>>>>>> 
>>>>>> }
>>> 



More information about the panama-dev mailing list