Vector API performance variation with arrays, byte arrays or byte buffers

Vladimir Ivanov vladimir.x.ivanov at oracle.com
Thu Mar 12 18:45:53 UTC 2020


> In principle we should be able to trust the double register arguments passed to the vector load/store intrinsics as if they were used for field or array accesses?  I presume its hard to propagate that trust?

Double-register addressing is what causes problems. It abstracts away 
the type of access being performed and JIT-compiler has to recover that 
information. Otherwise, the access should be wrapped into memory 
barriers to avoid aliasing issues.

All accesses from bytecode are always on-heap and are accompanied by 
necessary safety checks (null and out-of-bounds checks).

It's not the case for Unsafe: unless base oop is provably non-null, 
there's always a chance left the access touches both on-heap and 
off-heap memory at runtime.

(There are some additional tricks which helps classify an access as 
on-heap, e.g. by looking at offset value, but usually that's it: the 
access is conservatively treated as mixed.)

And when base and offset come from heap/memory (as with ByteBuffers), 
important type information is lost and has to be recomputed before usage.

Value profiling (always null vs always non-null) can provide additional 
hints, but the profile points should be at proper use sites to avoid 
profile pollution.

Best regards,
Vladimir Ivanov

>> On Mar 12, 2020, at 6:41 AM, Vladimir Ivanov <vladimir.x.ivanov at oracle.com> wrote:
>>
>> I made an attempt [1] to disambiguate on-/off-heap cases and got some promising results:
>>
>> Before:
>>   vectorArrayArray      4324400.963 ± 15860.271  ops/s
>>   vectorDirectDirectBB  1466029.753 ± 20695.287  ops/s
>>   vectorHeapHeapBB      1588239.882 ± 26866.547  ops/s
>>   vectorMixedMixedBB    1562751.985 ±  4030.195  ops/s
>>
>> vs
>>
>> After:
>>
>>   vectorArrayArray      6142945.618 ± 29510.409  ops/s
>>   vectorDirectDirectBB  9378799.915 ± 75314.175  ops/s
>>   vectorHeapHeapBB      7470962.611 ± 88597.635  ops/s
>>   vectorMixedMixedBB    1602557.365 ± 10859.592  ops/s
>>
>>
>> But profile pollution is still a problem (at least, for on-heap case):
>>
>> -f 0:
>>   vectorArrayArray      5700371.818 ±  35667.373  ops/s
>>   vectorBufferBufferBB  9243089.668 ± 340918.224  ops/s
>>   vectorHeapHeapBB      1155846.181 ±  12768.211  ops/s
>>   vectorMixedMixedBB    1492740.924 ±  22736.938  ops/s
>>
>> Best regards,
>> Vladimir Ivanov
>>
>> [1]
>>
>> diff --git a/src/java.base/share/classes/java/nio/X-Buffer.java.template b/src/java.base/share/classes/java/nio/X-Buffer.java.template
>> --- a/src/java.base/share/classes/java/nio/X-Buffer.java.template
>> +++ b/src/java.base/share/classes/java/nio/X-Buffer.java.template
>> @@ -303,7 +303,7 @@
>>
>>      @Override
>>      Object base() {
>> -        return hb;
>> +        return Objects.requireNonNull(hb);
>>      }
>>
>> #if[byte]
>> diff --git a/src/java.base/share/classes/module-info.java b/src/java.base/share/classes/module-info.java
>> --- a/src/java.base/share/classes/module-info.java
>> +++ b/src/java.base/share/classes/module-info.java
>> @@ -152,7 +152,8 @@
>>          java.rmi,
>>          jdk.jlink,
>>          jdk.net,
>> -        jdk.incubator.foreign;
>> +        jdk.incubator.foreign,
>> +        jdk.incubator.vector;
>>      exports jdk.internal.access.foreign to
>>          jdk.incubator.foreign;
>>      exports jdk.internal.event to
>> diff --git a/src/jdk.incubator.vector/share/classes/jdk/incubator/vector/VectorIntrinsics.java b/src/jdk.incubator.vector/share/classes/jdk/incubator/vector/VectorIntrinsics.java
>> --- a/src/jdk.incubator.vector/share/classes/jdk/incubator/vector/VectorIntrinsics.java
>> +++ b/src/jdk.incubator.vector/share/classes/jdk/incubator/vector/VectorIntrinsics.java
>> @@ -1,6 +1,8 @@
>> package jdk.incubator.vector;
>>
>> import jdk.internal.HotSpotIntrinsicCandidate;
>> +import jdk.internal.access.JavaNioAccess;
>> +import jdk.internal.access.SharedSecrets;
>> import jdk.internal.misc.Unsafe;
>> import jdk.internal.vm.annotation.ForceInline;
>>
>> @@ -570,16 +572,17 @@
>>          return U.getMaxVectorSize(etype);
>>      }
>>
>> +    private static final JavaNioAccess JNA = SharedSecrets.getJavaNioAccess();
>>
>>      /*package-private*/
>>      @ForceInline
>>      static Object bufferBase(ByteBuffer bb) {
>> -        return U.getReference(bb, BYTE_BUFFER_HB);
>> +        return JNA.getBufferBase(bb);
>>      }
>>
>>      /*package-private*/
>>      @ForceInline
>>      static long bufferAddress(ByteBuffer bb, long offset) {
>> -        return U.getLong(bb, BUFFER_ADDRESS) + offset;
>> +        return JNA.getBufferAddress(bb) + offset;
>>      }
>> }
>>
>> On 12.03.2020 11:52, Vladimir Ivanov wrote:
>>>>> Membars are the culprit, but once they are gone,
>>>>
>>>> Ah, yes! What -XX option dod you use to disable insertion of the barrier?
>>>> How can we make those go away? IIRC some work was done in Panama to fix this?
>>> Unfortunately, no flags are available. Just a quick-n-dirty hack for now [1].
>>> There was some work to avoid barriers around off-heap accesses [2], but here the problem is with mixed accesses.
>>> For mixed access, there was additional profiling introduced [3] to enable speculative disambiguation, but even if we enable something similar for VectorIntrinsics.load/store it won't help: profile pollution will defeat it pretty quickly.
>>> I haven't thought it through yet, but possible answer could be to specialize the implementation for heap and direct buffers. Not sure about the implementation details though, so more experiments are needed.
>>> Best regards,
>>> Vladimir Ivanov
>>> [1]
>>> diff --git a/src/hotspot/share/opto/library_call.cpp b/src/hotspot/share/opto/library_call.cpp
>>> --- a/src/hotspot/share/opto/library_call.cpp
>>> +++ b/src/hotspot/share/opto/library_call.cpp
>>> @@ -7432,6 +7432,8 @@
>>>     const TypePtr *addr_type = gvn().type(addr)->isa_ptr();
>>>     const TypeAryPtr* arr_type = addr_type->isa_aryptr();
>>> +  bool needs_cpu_membar = can_access_non_heap && (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR);
>>> +
>>>     // Now handle special case where load/store happens from/to byte array but element type is not byte.
>>>     bool using_byte_array = arr_type != NULL && arr_type->elem()->array_element_basic_type() == T_BYTE && elem_bt != T_BYTE;
>>>     // Handle loading masks.
>>> @@ -7473,7 +7475,7 @@
>>>     const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
>>> -  if (can_access_non_heap) {
>>> +  if (needs_cpu_membar && !UseNewCode) {
>>>       insert_mem_bar(Op_MemBarCPUOrder);
>>>     }
>>> @@ -7517,7 +7519,7 @@
>>>       set_vector_result(box);
>>>     }
>>> -  if (can_access_non_heap) {
>>> +  if (needs_cpu_membar && !UseNewCode) {
>>>       insert_mem_bar(Op_MemBarCPUOrder);
>>>     }
>>> diff --git a/src/hotspot/share/opto/loopTransform.cpp b/src/hotspot/share/opto/loopTransform.cpp
>>> --- a/src/hotspot/share/opto/loopTransform.cpp
>>> +++ b/src/hotspot/share/opto/loopTransform.cpp
>>> @@ -781,7 +781,7 @@
>>>     }
>>>     // Check for initial stride being a small enough constant
>>> -  if (abs(cl->stride_con()) > (1<<2)*future_unroll_cnt) return false;
>>> +  if (!UseNewCode2 && abs(cl->stride_con()) > (1<<2)*future_unroll_cnt) return false;
>>>     // Don't unroll if the next round of unrolling would push us
>>>     // over the expected trip count of the loop.  One is subtracted
>>> [2] https://bugs.openjdk.java.net/browse/JDK-8226411
>>> [3] https://bugs.openjdk.java.net/browse/JDK-8181211
>>>>> C2 unrolling heuristics need some tweaking as well: it doesn't unroll loops with large strides (8*8 = 32).
>>>>>
>>>>> Once membars are gone and unrolling is fixed, the scores become in favor of direct buffers (my guess is due to alignment):
>>>>>
>>>>> Before:
>>>>>
>>>>>   -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=2:
>>>>>     vectorArrayArray      5738494.127 ± 52704.256  ops/s
>>>>>     vectorBufferBuffer    1584747.638 ± 35644.433  ops/s
>>>>>
>>>>>   -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=0:
>>>>>     vectorArrayArray      5705607.529 ±  118589.894  ops/s
>>>>>     vectorBufferBuffer    2573858.340 ±   3322.248  ops/s
>>>>>
>>>>> vs
>>>>>
>>>>> After (no membars + unrolling):
>>>>>
>>>>>   -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=[0,2]:
>>>>>     vectorArrayArray      7961232.893 ± 59427.218  ops/s
>>>>>     vectorBufferBuffer    8600848.228 ± 84322.430  ops/s
>>>>>
>>>>> Best regards,
>>>>> Vladimir Ivanov
>>>>>
>>>>>>> On Mar 10, 2020, at 7:51 AM, Antoine Chambille <ach at activeviam.com <mailto:ach at activeviam.com>> wrote:
>>>>>>>
>>>>>>> Hi folks,
>>>>>>>
>>>>>>> First, the new Vector API is -awesome- and it makes Java the best language
>>>>>>> for writing data parallel algorithms, a remarkable turnaround. It reminds
>>>>>>> me of when Java 5 became the best language for concurrent programming.
>>>>>>>
>>>>>>> I'm benchmarking a use case where you aggregate element wise an array of
>>>>>>> doubles into another array of doubles ( ai += bi for each coordinate ).
>>>>>>> There are large performance variations depending on whether the data is
>>>>>>> held in arrays, byte arrays or byte buffers. Disabling bounds checking
>>>>>>> removes some of the overhead but not all. I'm sharing the JMH
>>>>>>> microbenchmark below if that can help.
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> Here are the results of running the benchmark on my laptop with Windows 10
>>>>>>> and an Intel core i9-8950HK @2.90GHz
>>>>>>>
>>>>>>>
>>>>>>> -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=2
>>>>>>>
>>>>>>> Benchmark                  Mode  Cnt        Score        Error  Units
>>>>>>> standardArrayArray        thrpt    5  4657680.731 ±  22775.673  ops/s
>>>>>>> standardArrayBuffer       thrpt    5  1074170.758 ±  28116.666  ops/s
>>>>>>> standardBufferArray       thrpt    5  1066531.757 ±  39990.913  ops/s
>>>>>>> standardBufferBuffer      thrpt    5   801500.523 ±  19984.247  ops/s
>>>>>>> vectorArrayArray          thrpt    5  7107822.743 ± 454478.273  ops/s
>>>>>>> vectorArrayBuffer         thrpt    5  1922263.407 ±  29921.036  ops/s
>>>>>>> vectorBufferArray         thrpt    5  2732335.558 ±  81958.886  ops/s
>>>>>>> vectorBufferBuffer        thrpt    5  1833276.409 ±  59682.441  ops/s
>>>>>>> vectorByteArrayByteArray  thrpt    5  4618267.357 ± 127141.691  ops/s
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=0
>>>>>>>
>>>>>>> Benchmark                  Mode  Cnt        Score        Error  Units
>>>>>>> standardArrayArray        thrpt    5  4692286.894 ±  67785.058  ops/s
>>>>>>> standardArrayBuffer       thrpt    5  1073420.025 ±  28216.922  ops/s
>>>>>>> standardBufferArray       thrpt    5  1066385.323 ±  15700.653  ops/s
>>>>>>> standardBufferBuffer      thrpt    5   797741.269 ±  15881.590  ops/s
>>>>>>> vectorArrayArray          thrpt    5  8351594.873 ± 153608.251  ops/s
>>>>>>> vectorArrayBuffer         thrpt    5  3107638.739 ± 223093.281  ops/s
>>>>>>> vectorBufferArray         thrpt    5  3653867.093 ±  75307.265  ops/s
>>>>>>> vectorBufferBuffer        thrpt    5  2224031.876 ±  49263.778  ops/s
>>>>>>> vectorByteArrayByteArray  thrpt    5  4761018.920 ± 264243.227  ops/s
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> cheers,
>>>>>>> -Antoine
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> package com.activeviam;
>>>>>>>
>>>>>>> import jdk.incubator.vector.DoubleVector;
>>>>>>> import jdk.incubator.vector.VectorSpecies;
>>>>>>> import org.openjdk.jmh.annotations.*;
>>>>>>> import org.openjdk.jmh.runner.Runner;
>>>>>>> import org.openjdk.jmh.runner.options.Options;
>>>>>>> import org.openjdk.jmh.runner.options.OptionsBuilder;
>>>>>>>
>>>>>>> import java.nio.ByteBuffer;
>>>>>>> import java.nio.ByteOrder;
>>>>>>>
>>>>>>> /**
>>>>>>> * Benchmark the element wise aggregation of an array
>>>>>>> * of doubles into another array of doubles, using
>>>>>>> * combinations of  java arrays, byte buffers, standard java code
>>>>>>> * and the new Vector API.
>>>>>>> */
>>>>>>> public class AggregationBenchmark {
>>>>>>>
>>>>>>>     /** Manually launch JMH */
>>>>>>>     public static void main(String[] params) throws Exception {
>>>>>>>         Options opt = new OptionsBuilder()
>>>>>>>             .include(AggregationBenchmark.class.getSimpleName())
>>>>>>>             .forks(1)
>>>>>>>             .build();
>>>>>>>
>>>>>>>         new Runner(opt).run();
>>>>>>>     }
>>>>>>>
>>>>>>>
>>>>>>>     @State(Scope.Benchmark)
>>>>>>>     public static class Data {
>>>>>>>         final static int SIZE = 1024;
>>>>>>>         final double[] inputArray;
>>>>>>>         final double[] outputArray;
>>>>>>>         final byte[] inputByteArray;
>>>>>>>         final byte[] outputByteArray;
>>>>>>>         final ByteBuffer inputBuffer;
>>>>>>>         final ByteBuffer outputBuffer;
>>>>>>>
>>>>>>>         public Data() {
>>>>>>>             this.inputArray = new double[SIZE];
>>>>>>>             this.outputArray = new double[SIZE];
>>>>>>>             this.inputByteArray = new byte[8 * SIZE];
>>>>>>>             this.outputByteArray = new byte[8 * SIZE];
>>>>>>>             this.inputBuffer = ByteBuffer.allocateDirect(8 * SIZE);
>>>>>>>             this.outputBuffer = ByteBuffer.allocateDirect(8 * SIZE);
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>>     @Benchmark
>>>>>>>     public void standardArrayArray(Data state) {
>>>>>>>         final double[] input = state.inputArray;
>>>>>>>         final double[] output = state.outputArray;
>>>>>>>         for(int i = 0; i < input.length; i++) {
>>>>>>>             output[i] += input[i];
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>>     @Benchmark
>>>>>>>     public void standardArrayBuffer(Data state) {
>>>>>>>         final double[] input = state.inputArray;
>>>>>>>         final ByteBuffer output = state.outputBuffer;
>>>>>>>         for(int i = 0; i < input.length; i++) {
>>>>>>>             output.putDouble(i << 3, output.getDouble(i << 3) + input[i]);
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>>     @Benchmark
>>>>>>>     public void standardBufferArray(Data state) {
>>>>>>>         final ByteBuffer input = state.inputBuffer;
>>>>>>>         final double[] output = state.outputArray;
>>>>>>>         for(int i = 0; i < input.capacity(); i+=8) {
>>>>>>>             output[i >>> 3] += input.getDouble(i);
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>>     @Benchmark
>>>>>>>     public void standardBufferBuffer(Data state) {
>>>>>>>         final ByteBuffer input = state.inputBuffer;
>>>>>>>         final ByteBuffer output = state.outputBuffer;
>>>>>>>         for(int i = 0; i < input.capacity(); i+=8) {
>>>>>>>             output.putDouble(i, output.getDouble(i) + input.getDouble(i));
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>>
>>>>>>>     final static VectorSpecies<Double> SPECIES = DoubleVector.SPECIES_MAX;
>>>>>>>
>>>>>>>     @Benchmark
>>>>>>>     public void vectorArrayArray(Data state) {
>>>>>>>         final double[] input = state.inputArray;
>>>>>>>         final double[] output = state.outputArray;
>>>>>>>
>>>>>>>         for (int i = 0; i < input.length; i+=SPECIES.length()) {
>>>>>>>             DoubleVector a = DoubleVector.fromArray(SPECIES, input, i);
>>>>>>>             DoubleVector b = DoubleVector.fromArray(SPECIES, output, i);
>>>>>>>             a = a.add(b);
>>>>>>>             a.intoArray(output, i);
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>>     @Benchmark
>>>>>>>     public void vectorByteArrayByteArray(Data state) {
>>>>>>>         final byte[] input = state.inputByteArray;
>>>>>>>         final byte[] output = state.outputByteArray;
>>>>>>>
>>>>>>>         for (int i = 0; i < input.length; i += 8 * SPECIES.length()) {
>>>>>>>             DoubleVector a = DoubleVector.fromByteArray(SPECIES, input, i);
>>>>>>>             DoubleVector b = DoubleVector.fromByteArray(SPECIES, output, i);
>>>>>>>             a = a.add(b);
>>>>>>>             a.intoByteArray(output, i);
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>>     @Benchmark
>>>>>>>     public void vectorBufferBuffer(Data state) {
>>>>>>>         final ByteBuffer input = state.inputBuffer;
>>>>>>>         final ByteBuffer output = state.outputBuffer;
>>>>>>>         for (int i = 0; i < input.capacity(); i += 8 * SPECIES.length()) {
>>>>>>>             DoubleVector a = DoubleVector.fromByteBuffer(SPECIES, input, i,
>>>>>>> ByteOrder.nativeOrder());
>>>>>>>             DoubleVector b = DoubleVector.fromByteBuffer(SPECIES, output,
>>>>>>> i, ByteOrder.nativeOrder());
>>>>>>>             a = a.add(b);
>>>>>>>             a.intoByteBuffer(output, i, ByteOrder.nativeOrder());
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>>     @Benchmark
>>>>>>>     public void vectorArrayBuffer(Data state) {
>>>>>>>         final double[] input = state.inputArray;
>>>>>>>         final ByteBuffer output = state.outputBuffer;
>>>>>>>
>>>>>>>         for (int i = 0; i < input.length; i+=SPECIES.length()) {
>>>>>>>             DoubleVector a = DoubleVector.fromArray(SPECIES, input, i);
>>>>>>>             DoubleVector b = DoubleVector.fromByteBuffer(SPECIES, output, i
>>>>>>> << 3, ByteOrder.nativeOrder());
>>>>>>>             a = a.add(b);
>>>>>>>             a.intoByteBuffer(output, i << 3, ByteOrder.nativeOrder());
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>>     @Benchmark
>>>>>>>     public void vectorBufferArray(Data state) {
>>>>>>>         final ByteBuffer input = state.inputBuffer;
>>>>>>>         final double[] output = state.outputArray;
>>>>>>>         for (int i = 0; i < input.capacity(); i += 8 * SPECIES.length()) {
>>>>>>>             DoubleVector a = DoubleVector.fromByteBuffer(SPECIES, input, i,
>>>>>>> ByteOrder.nativeOrder());
>>>>>>>             DoubleVector b = DoubleVector.fromArray(SPECIES, output, i >>>
>>>>>>> 3);
>>>>>>>             a = a.add(b);
>>>>>>>             a.intoArray(output, i >>> 3);
>>>>>>>         }
>>>>>>>     }
>>>>>>>
>>>>>>> }
>>>>
> 


More information about the panama-dev mailing list