[13] RFR 8225257: sun/security/tools/keytool/PSS.java timed out
Valerie Peng
valerie.peng at oracle.com
Thu Jun 20 22:27:02 UTC 2019
Hi Max,
My own concern is that you may be using an undocumented functionality
which may break later.
Since I don't have a better solution/workaround than what you have here,
I think we can just go by what you have.
Thanks,
Valerie
On 6/18/2019 8:44 PM, Weijun Wang wrote:
>> On Jun 19, 2019, at 8:16 AM, Valerie Peng <valerie.peng at oracle.com> wrote:
>>
>> Hi Max,
>>
>> Is this due to the RSA KeyPairGenerator impl of MSCAPI provider?
> No, SunMSCAPI is at the end of the providers list. SunRsaSign is chosen on Windows.
>
>> Is there documentation on how the patch version of this RSAKeyPairGenerator class is built and why it'd be placed under ${test.classes}/patches/java.base directory?
> I don't know. it's just my observation. Another way is to find the --patch-module argument on the test itself and re-apply it to the keytool command, but I can only get it with jdk.internal.misc.VM.getRuntimeArguments() and a @modules java.base/jdk.internal.misc tag is needed.
>
>> I am somewhat unsure about this approach as this would mean that we are not using the real default RSA key pair generator functionality for ALL env/platforms. Is this not part of what this test is about?
> This is a keytool test which is mainly about keytool recognizing the key algorithm name and how to derive a signature algorithm from the key algorithm and key size. I think it does not matter what the provider of the key pair generator is.
>
>> I saw comments about Solaris RSA key pair gen being so slow that this test is not run on Solaris.
> Yes, back when Solaris was slow I decided not to run on Solaris because the test is not meant to be platform dependent. While I was fixing this one, I thought about bring Solaris back but realized PKCS11 is used there (esp, you recently added PSS support) and I don't want to patch PKCS11 too.
>
>> If this is window-specific, maybe avoid the 8192 key size or find a way to work around this.
> I'll need 8192 to make sure SHA512withRSA is chosen for this key size.
>
>> How do user generate 8192-bit RSA keys on windows? Do they just wait?
> On my Windows (it's just a VirtialBox VM) it is not so slow, but it looks like Windows test machines tend to be slower than others. Also, I am afraid some day another OS might be also slow and that's why I decided to patch the generation code itself.
>
> Thanks,
> Max
>
>> Thanks,
>> Valerie
>> On 6/18/2019 7:26 AM, Weijun Wang wrote:
>>> I rethink about this. Since the patched class was meant to make the generation faster, it should never silently fallback to "real" generation. Otherwise, it could be slow again unnoticed.
>>>
>>> Updated webrev at http://cr.openjdk.java.net/~weijun/8225257/webrev.01/.
>>>
>>> Thanks,
>>> Max
>>>
>>> p.s. Again, the difference between the original class and my patches one is:
>>>
>>> diff --git src/java.base/share/classes/sun/security/rsa/RSAKeyPairGenerator.java test/jdk/sun/security/tools/keytool/pss/java.base/sun/security/rsa/RSAKeyPairGenerator.java
>>> index 07fd44f..d73308f 100644
>>> --- src/java.base/share/classes/sun/security/rsa/RSAKeyPairGenerator.java
>>> +++ test/jdk/sun/security/tools/keytool/pss/java.base/sun/security/rsa/RSAKeyPairGenerator.java
>>> @@ -1,12 +1,10 @@
>>> /*
>>> - * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
>>> + * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
>>> * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
>>> *
>>> * This code is free software; you can redistribute it and/or modify it
>>> * under the terms of the GNU General Public License version 2 only, as
>>> - * published by the Free Software Foundation. Oracle designates this
>>> - * particular file as subject to the "Classpath" exception as provided
>>> - * by Oracle in the LICENSE file that accompanied this code.
>>> + * published by the Free Software Foundation.
>>> *
>>> * This code is distributed in the hope that it will be useful, but WITHOUT
>>> * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
>>> @@ -32,19 +30,11 @@ import java.security.spec.AlgorithmParameterSpec;
>>> import java.security.spec.RSAKeyGenParameterSpec;
>>>
>>> import sun.security.jca.JCAUtil;
>>> -import static sun.security.util.SecurityProviderConstants.DEF_RSA_KEY_SIZE;
>>> -import static sun.security.util.SecurityProviderConstants.DEF_RSASSA_PSS_KEY_SIZE;
>>> import sun.security.x509.AlgorithmId;
>>> import static sun.security.rsa.RSAUtil.KeyType;
>>>
>>> /**
>>> - * RSA keypair generation. Standard algorithm, minimum key length 512 bit.
>>> - * We generate two random primes until we find two where phi is relative
>>> - * prime to the public exponent. Default exponent is 65537. It has only bit 0
>>> - * and bit 4 set, which makes it particularly efficient.
>>> - *
>>> - * @since 1.5
>>> - * @author Andreas Sterbenz
>>> + * Fake RSA keypair generation.
>>> */
>>> public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
>>>
>>> @@ -57,9 +47,6 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
>>> private final KeyType type;
>>> private AlgorithmId rsaId;
>>>
>>> - // PRNG to use
>>> - private SecureRandom random;
>>> -
>>> RSAKeyPairGenerator(KeyType type, int defKeySize) {
>>> this.type = type;
>>> // initialize to default in case the app does not call initialize()
>>> @@ -120,35 +107,135 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
>>>
>>> this.keySize = tmpKeySize;
>>> this.publicExponent = tmpPublicExponent;
>>> - this.random = random;
>>> }
>>>
>>> // generate the keypair. See JCA doc
>>> public KeyPair generateKeyPair() {
>>> +
>>> // accommodate odd key sizes in case anybody wants to use them
>>> - int lp = (keySize + 1) >> 1;
>>> - int lq = keySize - lp;
>>> - if (random == null) {
>>> - random = JCAUtil.getSecureRandom();
>>> - }
>>> BigInteger e = publicExponent;
>>> - while (true) {
>>> - // generate two random primes of size lp/lq
>>> - BigInteger p = BigInteger.probablePrime(lp, random);
>>> - BigInteger q, n;
>>> - do {
>>> - q = BigInteger.probablePrime(lq, random);
>>> - // convention is for p > q
>>> - if (p.compareTo(q) < 0) {
>>> - BigInteger tmp = p;
>>> - p = q;
>>> - q = tmp;
>>> - }
>>> - // modulus n = p * q
>>> + if (!e.equals(RSAKeyGenParameterSpec.F4)) {
>>> + throw new AssertionError("Only support F4 now");
>>> + }
>>> + BigInteger p, q, n;
>>> +
>>> + // Pre-calculated p and q for e == RSAKeyGenParameterSpec.F4
>>> + switch (keySize) {
>>> + case 2048:
>>> + p = new BigInteger("1600840041787354447543653385760927"
>>> + + "2642568308955833364523274045522752644800599"
>>> + + "8669541532595690224703734511692014533312515"
>>> + + "1867029838883431415692353449578487671384896"
>>> + + "6611685764860941767986520897595108597563035"
>>> + + "4023785639802607792535812062420427283857665"
>>> + + "9883578590844700707106157871508280052743363"
>>> + + "65749456332400771");
>>> + q = new BigInteger("1303880717101677622201474394769850"
>>> + + "7257196073324816341282215626935164930077468"
>>> + + "5999131251387556761167658937349436378464220"
>>> + + "4831804147777472146628148336776639855791417"
>>> + + "3849903041999943901924899580268176393595653"
>>> + + "7357080543898614581363167420619163047562600"
>>> + + "6155574020606891195960345238780709194499010"
>>> + + "43652862954645301");
>>> + break;
>>> + case 4096:
>>> + p = new BigInteger("2985635754414679487171962796211911"
>>> + + "1563710734938215274736352092606404045130913"
>>> + + "2477365484439939846705721840432140066578525"
>>> + + "0762327458086280430118434094733412377416194"
>>> + + "8736124795243564050755767519346747209606612"
>>> + + "5835460937739428885308798309679495432910469"
>>> + + "0294757621321446003970767164933974474924664"
>>> + + "1513767092845098947552598109657871041666676"
>>> + + "2945573325433283821164032766425479703026349"
>>> + + "9433641551427112483593214628620450175257586"
>>> + + "4350119143877183562692754400346175237007314"
>>> + + "7121580349193179272551363894896336921717843"
>>> + + "3734726842184251708799134654802475890197293"
>>> + + "9094908310578403843742664173424031260840446"
>>> + + "591633359364559754200663");
>>> + q = new BigInteger("2279248439141087793789384816271625"
>>> + + "1304008816573950275844533962181244003563987"
>>> + + "6638461665174020058827698592331066726709304"
>>> + + "9231319346136709972639455506783245161859951"
>>> + + "6191872757335765533547033659834427437142631"
>>> + + "3801232751161907082392011429712327250253948"
>>> + + "6012497852063361866175243227579880020724881"
>>> + + "9393797645220239009219998518884396282407710"
>>> + + "7199202450846395844337846503427790307364624"
>>> + + "5124871273035872938616425951596065309519651"
>>> + + "1519189356431513094684173807318945903212527"
>>> + + "7712469749366620048658571121822171067675915"
>>> + + "5479178304648399924549334007222294762969503"
>>> + + "5341584429803583589276956979963609078497238"
>>> + + "760757619468018224491053");
>>> + break;
>>> + case 8192:
>>> + p = new BigInteger("9821669838446774374944535804569858"
>>> + + "0553278885576950130485823829973470553571905"
>>> + + "3014418421996241500307589880457361653957913"
>>> + + "9176499436767288125182942994089196450118944"
>>> + + "8701794862752733776161684616570463744619126"
>>> + + "4981622564763630694110472008409561205704867"
>>> + + "0221819623405201369630462487520858670679048"
>>> + + "5854008441429858453634949980424333056803703"
>>> + + "1205609490778445762604050796894221725977551"
>>> + + "1428887194691696420765173256600200430067305"
>>> + + "4364524177041858044598166859757042904625691"
>>> + + "4292728453597609683799189454690202563236931"
>>> + + "8171122071288244573793276051041975005528757"
>>> + + "0228306442708182141334279133965507583927772"
>>> + + "9244311696220253059281524393613278272067808"
>>> + + "7017494446447670799055720358621918361716353"
>>> + + "5018317015764698318012095108914870478138809"
>>> + + "8204738169777192718869484177321870413838036"
>>> + + "8149216482968887382371881239714335470844573"
>>> + + "1862934371951394070111726593305334971041399"
>>> + + "5517260339034138718517336990212463882142363"
>>> + + "9154412320743552301967162100734381046548816"
>>> + + "3883737645359595416600487444018399886391071"
>>> + + "3777667222706059170707223589163679915863781"
>>> + + "4662302526078720977228426750718207481384357"
>>> + + "7918717041190413457052439016978578217755022"
>>> + + "7370720979516554707297685239584071755267452"
>>> + + "6021894842754355160100506065457679069228273"
>>> + + "95209345267367982516553449135291473361");
>>> + q = new BigInteger("7902448465953646210110784092684896"
>>> + + "0265474424590294110174550047938700740921014"
>>> + + "1981650823416127449143596912363210790070524"
>>> + + "2903784112701128957948996730263815210531364"
>>> + + "0489145287401377007608600217628773627723381"
>>> + + "1194123533939872283952535576847014977682278"
>>> + + "9332064706645169741712060131540562788886577"
>>> + + "3762235020990267901959745687867018811088495"
>>> + + "3716021011509120447248882358515954471433808"
>>> + + "2782236662758287959413069553620728137831579"
>>> + + "2321174813204514354999978428741310035945405"
>>> + + "0226661395731921098764192439072425262100813"
>>> + + "9732949866553839713092238096261034339815187"
>>> + + "2832617055364163276140160068136296115910569"
>>> + + "9466440903693740716929166334256441926903849"
>>> + + "1082968246155177124035336609654226388424434"
>>> + + "5775783323612758615407928446164631651292743"
>>> + + "8428509642959278732826297890909454571009075"
>>> + + "7836191622138731918099379467912681177757761"
>>> + + "6141378131042432093843778753846726589215845"
>>> + + "7402160146427434508515156204064224022904659"
>>> + + "8645441448874409852211668374267341177082462"
>>> + + "7341410218867175406105046487057429530801973"
>>> + + "0931082058719258230993681115780999537424968"
>>> + + "2385515792331573549935317407789344892257264"
>>> + + "7464569110078675090194686816764429827739815"
>>> + + "0566036514181547634372488184242167294602000"
>>> + + "8232780963578241583529875079397308150506597"
>>> + + "37190564909892937290776929541076192569");
>>> + break;
>>> + default:
>>> + throw new AssertionError("Unknown keySize " + keySize);
>>> + }
>>> +
>>> n = p.multiply(q);
>>> - // even with correctly sized p and q, there is a chance that
>>> - // n will be one bit short. re-generate the smaller prime if so
>>> - } while (n.bitLength() < keySize);
>>>
>>> // phi = (p - 1) * (q - 1) must be relative prime to e
>>> // otherwise RSA just won't work ;-)
>>> @@ -158,7 +245,7 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
>>> // generate new p and q until they work. typically
>>> // the first try will succeed when using F4
>>> if (e.gcd(phi).equals(BigInteger.ONE) == false) {
>>> - continue;
>>> + throw new AssertionError("Should not happen");
>>> }
>>>
>>> // private exponent d is the inverse of e mod phi
>>> @@ -184,16 +271,3 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
>>> }
>>> }
>>> }
>>> -
>>> - public static final class Legacy extends RSAKeyPairGenerator {
>>> - public Legacy() {
>>> - super(KeyType.RSA, DEF_RSA_KEY_SIZE);
>>> - }
>>> - }
>>> -
>>> - public static final class PSS extends RSAKeyPairGenerator {
>>> - public PSS() {
>>> - super(KeyType.PSS, DEF_RSASSA_PSS_KEY_SIZE);
>>> - }
>>> - }
>>> -}
>>>
>>>
>>>> On Jun 18, 2019, at 12:58 PM, Weijun Wang <weijun.wang at oracle.com> wrote:
>>>>
>>>> Please take a review at
>>>>
>>>> http://cr.openjdk.java.net/~weijun/8225257/webrev.00/
>>>>
>>>> I've patched the internal java.base/sun.security.rsa.RSAKeyPairGenerator class so it returns hardcoded pre-calculated key pairs.
>>>>
>>>> Thanks,
>>>> Max
More information about the security-dev
mailing list