[13] RFR 8225257: sun/security/tools/keytool/PSS.java timed out
Weijun Wang
weijun.wang at oracle.com
Tue Jun 18 04:58:25 UTC 2019
Please take a review at
http://cr.openjdk.java.net/~weijun/8225257/webrev.00/
I've patches the internal java.base/sun.security.rsa.RSAKeyPairGenerator class so it returns hardcoded pre-calculated key pairs.
Thanks,
Max
p.s. Below is the difference between the original class and my modified one:
@@ -1,12 +1,10 @@
/*
- * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation. Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
+ * published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@@ -32,19 +30,11 @@ import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.RSAKeyGenParameterSpec;
import sun.security.jca.JCAUtil;
-import static sun.security.util.SecurityProviderConstants.DEF_RSA_KEY_SIZE;
-import static sun.security.util.SecurityProviderConstants.DEF_RSASSA_PSS_KEY_SIZE;
import sun.security.x509.AlgorithmId;
import static sun.security.rsa.RSAUtil.KeyType;
/**
- * RSA keypair generation. Standard algorithm, minimum key length 512 bit.
- * We generate two random primes until we find two where phi is relative
- * prime to the public exponent. Default exponent is 65537. It has only bit 0
- * and bit 4 set, which makes it particularly efficient.
- *
- * @since 1.5
- * @author Andreas Sterbenz
+ * Fake RSA keypair generation.
*/
public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
@@ -132,10 +122,133 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
random = JCAUtil.getSecureRandom();
}
BigInteger e = publicExponent;
+ boolean usePreCalculated = true;
while (true) {
+ BigInteger p = BigInteger.ZERO;
+ BigInteger q = BigInteger.ZERO;
+ BigInteger n = BigInteger.ZERO;
+ if (usePreCalculated) {
+ switch (keySize) {
+ case 2048:
+ p = new BigInteger("1600840041787354447543653385760927"
+ + "2642568308955833364523274045522752644800599"
+ + "8669541532595690224703734511692014533312515"
+ + "1867029838883431415692353449578487671384896"
+ + "6611685764860941767986520897595108597563035"
+ + "4023785639802607792535812062420427283857665"
+ + "9883578590844700707106157871508280052743363"
+ + "65749456332400771");
+ q = new BigInteger("1303880717101677622201474394769850"
+ + "7257196073324816341282215626935164930077468"
+ + "5999131251387556761167658937349436378464220"
+ + "4831804147777472146628148336776639855791417"
+ + "3849903041999943901924899580268176393595653"
+ + "7357080543898614581363167420619163047562600"
+ + "6155574020606891195960345238780709194499010"
+ + "43652862954645301");
+ n = p.multiply(q);
+ break;
+ case 4096:
+ p = new BigInteger("2985635754414679487171962796211911"
+ + "1563710734938215274736352092606404045130913"
+ + "2477365484439939846705721840432140066578525"
+ + "0762327458086280430118434094733412377416194"
+ + "8736124795243564050755767519346747209606612"
+ + "5835460937739428885308798309679495432910469"
+ + "0294757621321446003970767164933974474924664"
+ + "1513767092845098947552598109657871041666676"
+ + "2945573325433283821164032766425479703026349"
+ + "9433641551427112483593214628620450175257586"
+ + "4350119143877183562692754400346175237007314"
+ + "7121580349193179272551363894896336921717843"
+ + "3734726842184251708799134654802475890197293"
+ + "9094908310578403843742664173424031260840446"
+ + "591633359364559754200663");
+ q = new BigInteger("2279248439141087793789384816271625"
+ + "1304008816573950275844533962181244003563987"
+ + "6638461665174020058827698592331066726709304"
+ + "9231319346136709972639455506783245161859951"
+ + "6191872757335765533547033659834427437142631"
+ + "3801232751161907082392011429712327250253948"
+ + "6012497852063361866175243227579880020724881"
+ + "9393797645220239009219998518884396282407710"
+ + "7199202450846395844337846503427790307364624"
+ + "5124871273035872938616425951596065309519651"
+ + "1519189356431513094684173807318945903212527"
+ + "7712469749366620048658571121822171067675915"
+ + "5479178304648399924549334007222294762969503"
+ + "5341584429803583589276956979963609078497238"
+ + "760757619468018224491053");
+ n = p.multiply(q);
+ break;
+ case 8192:
+ p = new BigInteger("9821669838446774374944535804569858"
+ + "0553278885576950130485823829973470553571905"
+ + "3014418421996241500307589880457361653957913"
+ + "9176499436767288125182942994089196450118944"
+ + "8701794862752733776161684616570463744619126"
+ + "4981622564763630694110472008409561205704867"
+ + "0221819623405201369630462487520858670679048"
+ + "5854008441429858453634949980424333056803703"
+ + "1205609490778445762604050796894221725977551"
+ + "1428887194691696420765173256600200430067305"
+ + "4364524177041858044598166859757042904625691"
+ + "4292728453597609683799189454690202563236931"
+ + "8171122071288244573793276051041975005528757"
+ + "0228306442708182141334279133965507583927772"
+ + "9244311696220253059281524393613278272067808"
+ + "7017494446447670799055720358621918361716353"
+ + "5018317015764698318012095108914870478138809"
+ + "8204738169777192718869484177321870413838036"
+ + "8149216482968887382371881239714335470844573"
+ + "1862934371951394070111726593305334971041399"
+ + "5517260339034138718517336990212463882142363"
+ + "9154412320743552301967162100734381046548816"
+ + "3883737645359595416600487444018399886391071"
+ + "3777667222706059170707223589163679915863781"
+ + "4662302526078720977228426750718207481384357"
+ + "7918717041190413457052439016978578217755022"
+ + "7370720979516554707297685239584071755267452"
+ + "6021894842754355160100506065457679069228273"
+ + "95209345267367982516553449135291473361");
+ q = new BigInteger("7902448465953646210110784092684896"
+ + "0265474424590294110174550047938700740921014"
+ + "1981650823416127449143596912363210790070524"
+ + "2903784112701128957948996730263815210531364"
+ + "0489145287401377007608600217628773627723381"
+ + "1194123533939872283952535576847014977682278"
+ + "9332064706645169741712060131540562788886577"
+ + "3762235020990267901959745687867018811088495"
+ + "3716021011509120447248882358515954471433808"
+ + "2782236662758287959413069553620728137831579"
+ + "2321174813204514354999978428741310035945405"
+ + "0226661395731921098764192439072425262100813"
+ + "9732949866553839713092238096261034339815187"
+ + "2832617055364163276140160068136296115910569"
+ + "9466440903693740716929166334256441926903849"
+ + "1082968246155177124035336609654226388424434"
+ + "5775783323612758615407928446164631651292743"
+ + "8428509642959278732826297890909454571009075"
+ + "7836191622138731918099379467912681177757761"
+ + "6141378131042432093843778753846726589215845"
+ + "7402160146427434508515156204064224022904659"
+ + "8645441448874409852211668374267341177082462"
+ + "7341410218867175406105046487057429530801973"
+ + "0931082058719258230993681115780999537424968"
+ + "2385515792331573549935317407789344892257264"
+ + "7464569110078675090194686816764429827739815"
+ + "0566036514181547634372488184242167294602000"
+ + "8232780963578241583529875079397308150506597"
+ + "37190564909892937290776929541076192569");
+ n = p.multiply(q);
+ break;
+ default:
+ usePreCalculated = false;
+ }
+ }
+ if (!usePreCalculated) {
// generate two random primes of size lp/lq
- BigInteger p = BigInteger.probablePrime(lp, random);
- BigInteger q, n;
+ p = BigInteger.probablePrime(lp, random);
do {
q = BigInteger.probablePrime(lq, random);
// convention is for p > q
@@ -149,6 +262,7 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
// even with correctly sized p and q, there is a chance that
// n will be one bit short. re-generate the smaller prime if so
} while (n.bitLength() < keySize);
+ }
// phi = (p - 1) * (q - 1) must be relative prime to e
// otherwise RSA just won't work ;-)
@@ -158,6 +272,7 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
// generate new p and q until they work. typically
// the first try will succeed when using F4
if (e.gcd(phi).equals(BigInteger.ONE) == false) {
+ usePreCalculated = false; // in case the next check on e failed
continue;
}
@@ -184,16 +299,4 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
}
}
}
-
- public static final class Legacy extends RSAKeyPairGenerator {
- public Legacy() {
- super(KeyType.RSA, DEF_RSA_KEY_SIZE);
- }
- }
-
- public static final class PSS extends RSAKeyPairGenerator {
- public PSS() {
- super(KeyType.PSS, DEF_RSASSA_PSS_KEY_SIZE);
- }
- }
}
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://mail.openjdk.org/pipermail/security-dev/attachments/20190618/f4ab76ee/attachment.htm>
More information about the security-dev
mailing list