[13] RFR 8225257: sun/security/tools/keytool/PSS.java timed out

Weijun Wang weijun.wang at oracle.com
Tue Jun 18 14:26:44 UTC 2019


I rethink about this. Since the patched class was meant to make the generation faster, it should never silently fallback to "real" generation. Otherwise, it could be slow again unnoticed.

Updated webrev at http://cr.openjdk.java.net/~weijun/8225257/webrev.01/ <http://cr.openjdk.java.net/~weijun/8225257/webrev.01/>.

Thanks,
Max

p.s. Again, the difference between the original class and my patches one is:

diff --git src/java.base/share/classes/sun/security/rsa/RSAKeyPairGenerator.java test/jdk/sun/security/tools/keytool/pss/java.base/sun/security/rsa/RSAKeyPairGenerator.java
index 07fd44f..d73308f 100644
--- src/java.base/share/classes/sun/security/rsa/RSAKeyPairGenerator.java
+++ test/jdk/sun/security/tools/keytool/pss/java.base/sun/security/rsa/RSAKeyPairGenerator.java
@@ -1,12 +1,10 @@
 /*
- * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
  * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
+ * published by the Free Software Foundation.
  *
  * This code is distributed in the hope that it will be useful, but WITHOUT
  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@@ -32,19 +30,11 @@ import java.security.spec.AlgorithmParameterSpec;
 import java.security.spec.RSAKeyGenParameterSpec;
 
 import sun.security.jca.JCAUtil;
-import static sun.security.util.SecurityProviderConstants.DEF_RSA_KEY_SIZE;
-import static sun.security.util.SecurityProviderConstants.DEF_RSASSA_PSS_KEY_SIZE;
 import sun.security.x509.AlgorithmId;
 import static sun.security.rsa.RSAUtil.KeyType;
 
 /**
- * RSA keypair generation. Standard algorithm, minimum key length 512 bit.
- * We generate two random primes until we find two where phi is relative
- * prime to the public exponent. Default exponent is 65537. It has only bit 0
- * and bit 4 set, which makes it particularly efficient.
- *
- * @since   1.5
- * @author  Andreas Sterbenz
+ * Fake RSA keypair generation.
  */
 public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
 
@@ -57,9 +47,6 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
     private final KeyType type;
     private AlgorithmId rsaId;
 
-    // PRNG to use
-    private SecureRandom random;
-
     RSAKeyPairGenerator(KeyType type, int defKeySize) {
         this.type = type;
         // initialize to default in case the app does not call initialize()
@@ -120,35 +107,135 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
 
         this.keySize = tmpKeySize;
         this.publicExponent = tmpPublicExponent;
-        this.random = random;
     }
 
     // generate the keypair. See JCA doc
     public KeyPair generateKeyPair() {
+
         // accommodate odd key sizes in case anybody wants to use them
-        int lp = (keySize + 1) >> 1;
-        int lq = keySize - lp;
-        if (random == null) {
-            random = JCAUtil.getSecureRandom();
-        }
         BigInteger e = publicExponent;
-        while (true) {
-            // generate two random primes of size lp/lq
-            BigInteger p = BigInteger.probablePrime(lp, random);
-            BigInteger q, n;
-            do {
-                q = BigInteger.probablePrime(lq, random);
-                // convention is for p > q
-                if (p.compareTo(q) < 0) {
-                    BigInteger tmp = p;
-                    p = q;
-                    q = tmp;
-                }
-                // modulus n = p * q
+        if (!e.equals(RSAKeyGenParameterSpec.F4)) {
+            throw new AssertionError("Only support F4 now");
+        }
+        BigInteger p, q, n;
+
+        // Pre-calculated p and q for e == RSAKeyGenParameterSpec.F4
+        switch (keySize) {
+            case 2048:
+                p = new BigInteger("1600840041787354447543653385760927"
+                        + "2642568308955833364523274045522752644800599"
+                        + "8669541532595690224703734511692014533312515"
+                        + "1867029838883431415692353449578487671384896"
+                        + "6611685764860941767986520897595108597563035"
+                        + "4023785639802607792535812062420427283857665"
+                        + "9883578590844700707106157871508280052743363"
+                        + "65749456332400771");
+                q = new BigInteger("1303880717101677622201474394769850"
+                        + "7257196073324816341282215626935164930077468"
+                        + "5999131251387556761167658937349436378464220"
+                        + "4831804147777472146628148336776639855791417"
+                        + "3849903041999943901924899580268176393595653"
+                        + "7357080543898614581363167420619163047562600"
+                        + "6155574020606891195960345238780709194499010"
+                        + "43652862954645301");
+                break;
+            case 4096:
+                p = new BigInteger("2985635754414679487171962796211911"
+                        + "1563710734938215274736352092606404045130913"
+                        + "2477365484439939846705721840432140066578525"
+                        + "0762327458086280430118434094733412377416194"
+                        + "8736124795243564050755767519346747209606612"
+                        + "5835460937739428885308798309679495432910469"
+                        + "0294757621321446003970767164933974474924664"
+                        + "1513767092845098947552598109657871041666676"
+                        + "2945573325433283821164032766425479703026349"
+                        + "9433641551427112483593214628620450175257586"
+                        + "4350119143877183562692754400346175237007314"
+                        + "7121580349193179272551363894896336921717843"
+                        + "3734726842184251708799134654802475890197293"
+                        + "9094908310578403843742664173424031260840446"
+                        + "591633359364559754200663");
+                q = new BigInteger("2279248439141087793789384816271625"
+                        + "1304008816573950275844533962181244003563987"
+                        + "6638461665174020058827698592331066726709304"
+                        + "9231319346136709972639455506783245161859951"
+                        + "6191872757335765533547033659834427437142631"
+                        + "3801232751161907082392011429712327250253948"
+                        + "6012497852063361866175243227579880020724881"
+                        + "9393797645220239009219998518884396282407710"
+                        + "7199202450846395844337846503427790307364624"
+                        + "5124871273035872938616425951596065309519651"
+                        + "1519189356431513094684173807318945903212527"
+                        + "7712469749366620048658571121822171067675915"
+                        + "5479178304648399924549334007222294762969503"
+                        + "5341584429803583589276956979963609078497238"
+                        + "760757619468018224491053");
+                break;
+            case 8192:
+                p = new BigInteger("9821669838446774374944535804569858"
+                        + "0553278885576950130485823829973470553571905"
+                        + "3014418421996241500307589880457361653957913"
+                        + "9176499436767288125182942994089196450118944"
+                        + "8701794862752733776161684616570463744619126"
+                        + "4981622564763630694110472008409561205704867"
+                        + "0221819623405201369630462487520858670679048"
+                        + "5854008441429858453634949980424333056803703"
+                        + "1205609490778445762604050796894221725977551"
+                        + "1428887194691696420765173256600200430067305"
+                        + "4364524177041858044598166859757042904625691"
+                        + "4292728453597609683799189454690202563236931"
+                        + "8171122071288244573793276051041975005528757"
+                        + "0228306442708182141334279133965507583927772"
+                        + "9244311696220253059281524393613278272067808"
+                        + "7017494446447670799055720358621918361716353"
+                        + "5018317015764698318012095108914870478138809"
+                        + "8204738169777192718869484177321870413838036"
+                        + "8149216482968887382371881239714335470844573"
+                        + "1862934371951394070111726593305334971041399"
+                        + "5517260339034138718517336990212463882142363"
+                        + "9154412320743552301967162100734381046548816"
+                        + "3883737645359595416600487444018399886391071"
+                        + "3777667222706059170707223589163679915863781"
+                        + "4662302526078720977228426750718207481384357"
+                        + "7918717041190413457052439016978578217755022"
+                        + "7370720979516554707297685239584071755267452"
+                        + "6021894842754355160100506065457679069228273"
+                        + "95209345267367982516553449135291473361");
+                q = new BigInteger("7902448465953646210110784092684896"
+                        + "0265474424590294110174550047938700740921014"
+                        + "1981650823416127449143596912363210790070524"
+                        + "2903784112701128957948996730263815210531364"
+                        + "0489145287401377007608600217628773627723381"
+                        + "1194123533939872283952535576847014977682278"
+                        + "9332064706645169741712060131540562788886577"
+                        + "3762235020990267901959745687867018811088495"
+                        + "3716021011509120447248882358515954471433808"
+                        + "2782236662758287959413069553620728137831579"
+                        + "2321174813204514354999978428741310035945405"
+                        + "0226661395731921098764192439072425262100813"
+                        + "9732949866553839713092238096261034339815187"
+                        + "2832617055364163276140160068136296115910569"
+                        + "9466440903693740716929166334256441926903849"
+                        + "1082968246155177124035336609654226388424434"
+                        + "5775783323612758615407928446164631651292743"
+                        + "8428509642959278732826297890909454571009075"
+                        + "7836191622138731918099379467912681177757761"
+                        + "6141378131042432093843778753846726589215845"
+                        + "7402160146427434508515156204064224022904659"
+                        + "8645441448874409852211668374267341177082462"
+                        + "7341410218867175406105046487057429530801973"
+                        + "0931082058719258230993681115780999537424968"
+                        + "2385515792331573549935317407789344892257264"
+                        + "7464569110078675090194686816764429827739815"
+                        + "0566036514181547634372488184242167294602000"
+                        + "8232780963578241583529875079397308150506597"
+                        + "37190564909892937290776929541076192569");
+                break;
+            default:
+                throw new AssertionError("Unknown keySize " + keySize);
+        }
+
         n = p.multiply(q);
-                // even with correctly sized p and q, there is a chance that
-                // n will be one bit short. re-generate the smaller prime if so
-            } while (n.bitLength() < keySize);
 
         // phi = (p - 1) * (q - 1) must be relative prime to e
         // otherwise RSA just won't work ;-)
@@ -158,7 +245,7 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
         // generate new p and q until they work. typically
         // the first try will succeed when using F4
         if (e.gcd(phi).equals(BigInteger.ONE) == false) {
-                continue;
+            throw new AssertionError("Should not happen");
         }
 
         // private exponent d is the inverse of e mod phi
@@ -184,16 +271,3 @@ public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
         }
     }
 }
-
-    public static final class Legacy extends RSAKeyPairGenerator {
-        public Legacy() {
-            super(KeyType.RSA, DEF_RSA_KEY_SIZE);
-        }
-    }
-
-    public static final class PSS extends RSAKeyPairGenerator {
-        public PSS() {
-            super(KeyType.PSS, DEF_RSASSA_PSS_KEY_SIZE);
-        }
-    }
-}


> On Jun 18, 2019, at 12:58 PM, Weijun Wang <weijun.wang at oracle.com> wrote:
> 
> Please take a review at
> 
>    http://cr.openjdk.java.net/~weijun/8225257/webrev.00/
> 
> I've patched the internal java.base/sun.security.rsa.RSAKeyPairGenerator class so it returns hardcoded pre-calculated key pairs.
> 
> Thanks,
> Max

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://mail.openjdk.org/pipermail/security-dev/attachments/20190618/3e23851d/attachment.htm>


More information about the security-dev mailing list